383 lines
12 KiB
C
Raw Normal View History

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <stdlib.h>
2016-11-02 17:17:28 +08:00
#include <time.h>
#include <reent.h>
2017-08-16 14:58:30 +08:00
#include <unistd.h>
#include <sys/types.h>
#include <sys/reent.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/lock.h>
#include <rom/rtc.h>
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_clk.h"
2017-10-16 00:37:00 +08:00
#include "esp_timer.h"
2016-11-02 17:17:28 +08:00
#include "soc/soc.h"
#include "soc/rtc.h"
2016-11-02 17:17:28 +08:00
#include "soc/rtc_cntl_reg.h"
#include "soc/frc_timer_reg.h"
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "sdkconfig.h"
#include "limits.h"
2016-11-02 17:17:28 +08:00
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_RTC 1
#endif
2016-11-02 17:17:28 +08:00
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_FRC 1
2016-11-02 17:17:28 +08:00
#endif
#ifdef WITH_RTC
static uint64_t get_rtc_time_us()
{
const uint64_t ticks = rtc_time_get();
const uint32_t cal = esp_clk_slowclk_cal_get();
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
* for a 32kHz clock. We need to calculate (assuming no overflow):
* (ticks * cal) >> RTC_CLK_CAL_FRACT
*
* An overflow in the (ticks * cal) multiplication would cause time to
* wrap around after approximately 13 days, which is probably not enough
* for some applications.
* Therefore multiplication is split into two terms, for the lower 32-bit
* and the upper 16-bit parts of "ticks", i.e.:
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
*/
const uint64_t ticks_low = ticks & UINT32_MAX;
const uint64_t ticks_high = ticks >> 32;
return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
2016-11-02 17:17:28 +08:00
}
#endif // WITH_RTC
// s_boot_time: time from Epoch to the first boot time
#ifdef WITH_RTC
// when RTC is used to persist time, two RTC_STORE registers are used to store boot time
#elif defined(WITH_FRC)
static uint64_t s_boot_time;
#endif // WITH_RTC
#if defined(WITH_RTC) || defined(WITH_FRC)
static _lock_t s_boot_time_lock;
static _lock_t s_adjust_time_lock;
// stores the start time of the slew
static uint64_t adjtime_start = 0;
// is how many microseconds total to slew
static int64_t adjtime_total_correction = 0;
#define ADJTIME_CORRECTION_FACTOR 6
static uint64_t get_time_since_boot();
#endif
// Offset between FRC timer and the RTC.
// Initialized after reset or light sleep.
#if defined(WITH_RTC) && defined(WITH_FRC)
uint64_t s_microseconds_offset;
#endif
2016-11-02 17:17:28 +08:00
#if defined(WITH_RTC) || defined(WITH_FRC)
static void set_boot_time(uint64_t time_us)
{
_lock_acquire(&s_boot_time_lock);
#ifdef WITH_RTC
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
#else
s_boot_time = time_us;
#endif
_lock_release(&s_boot_time_lock);
}
static uint64_t get_boot_time()
{
uint64_t result;
_lock_acquire(&s_boot_time_lock);
#ifdef WITH_RTC
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
#else
result = s_boot_time;
#endif
_lock_release(&s_boot_time_lock);
return result;
}
// This function gradually changes boot_time to the correction value and immediately updates it.
static uint64_t adjust_boot_time()
{
uint64_t boot_time = get_boot_time();
if ((boot_time == 0) || (get_time_since_boot() < adjtime_start)) {
adjtime_start = 0;
}
if (adjtime_start > 0) {
uint64_t since_boot = get_time_since_boot();
// If to call this function once per second, then (since_boot - adjtime_start) will be 1_000_000 (1 second),
// and the correction will be equal to (1_000_000us >> 6) = 15_625 us.
// The minimum possible correction step can be (64us >> 6) = 1us.
// Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds.
int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (adjtime_start >> ADJTIME_CORRECTION_FACTOR);
if (correction > 0) {
adjtime_start = since_boot;
if (adjtime_total_correction < 0) {
if ((adjtime_total_correction + correction) >= 0) {
boot_time = boot_time + adjtime_total_correction;
adjtime_start = 0;
} else {
adjtime_total_correction += correction;
boot_time -= correction;
}
} else {
if ((adjtime_total_correction - correction) <= 0) {
boot_time = boot_time + adjtime_total_correction;
adjtime_start = 0;
} else {
adjtime_total_correction -= correction;
boot_time += correction;
}
}
set_boot_time(boot_time);
}
}
return boot_time;
}
// Get the adjusted boot time.
static uint64_t get_adjusted_boot_time (void)
{
_lock_acquire(&s_adjust_time_lock);
uint64_t adjust_time = adjust_boot_time();
_lock_release(&s_adjust_time_lock);
return adjust_time;
}
// Applying the accumulated correction to boot_time and stopping the smooth time adjustment.
static void adjtime_corr_stop (void)
{
_lock_acquire(&s_adjust_time_lock);
if (adjtime_start != 0){
adjust_boot_time();
adjtime_start = 0;
}
_lock_release(&s_adjust_time_lock);
}
#endif //defined(WITH_RTC) || defined(WITH_FRC)
int adjtime(const struct timeval *delta, struct timeval *outdelta)
{
#if defined( WITH_FRC ) || defined( WITH_RTC )
if(delta != NULL){
int64_t sec = delta->tv_sec;
int64_t usec = delta->tv_usec;
if(llabs(sec) > ((INT_MAX / 1000000L) - 1L)) {
return -1;
}
/*
* If adjusting the system clock by adjtime () is already done during the second call adjtime (),
* and the delta of the second call is not NULL, the earlier tuning is stopped,
* but the already completed part of the adjustment is not canceled.
*/
_lock_acquire(&s_adjust_time_lock);
// If correction is already in progress (adjtime_start != 0), then apply accumulated corrections.
adjust_boot_time();
adjtime_start = get_time_since_boot();
adjtime_total_correction = sec * 1000000L + usec;
_lock_release(&s_adjust_time_lock);
}
if(outdelta != NULL){
_lock_acquire(&s_adjust_time_lock);
adjust_boot_time();
if (adjtime_start != 0) {
outdelta->tv_sec = adjtime_total_correction / 1000000L;
outdelta->tv_usec = adjtime_total_correction % 1000000L;
} else {
outdelta->tv_sec = 0;
outdelta->tv_usec = 0;
}
_lock_release(&s_adjust_time_lock);
}
return 0;
#else
return -1;
#endif
}
void esp_clk_slowclk_cal_set(uint32_t new_cal)
{
#if defined(WITH_RTC)
/* To force monotonic time values even when clock calibration value changes,
* we adjust boot time, given current time and the new calibration value:
* T = boot_time_old + cur_cal * ticks / 2^19
* T = boot_time_adj + new_cal * ticks / 2^19
* which results in:
* boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19
*/
const int64_t ticks = (int64_t) rtc_time_get();
const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG);
int32_t cal_diff = (int32_t) (cur_cal - new_cal);
int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT);
uint64_t boot_time_adj = get_boot_time() + boot_time_diff;
set_boot_time(boot_time_adj);
#endif // WITH_RTC
REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal);
}
uint32_t esp_clk_slowclk_cal_get()
{
return REG_READ(RTC_SLOW_CLK_CAL_REG);
}
void esp_set_time_from_rtc()
{
#if defined( WITH_FRC ) && defined( WITH_RTC )
2016-11-02 17:17:28 +08:00
// initialize time from RTC clock
s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time();
#endif // WITH_FRC && WITH_RTC
2016-11-02 17:17:28 +08:00
}
uint64_t esp_clk_rtc_time(void)
{
#ifdef WITH_RTC
return get_rtc_time_us();
#else
return 0;
#endif
}
2016-11-02 17:17:28 +08:00
clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
{
clock_t t = xTaskGetTickCount() * (portTICK_PERIOD_MS * CLK_TCK / 1000);
ptms->tms_cstime = 0;
2016-11-02 17:17:28 +08:00
ptms->tms_cutime = 0;
ptms->tms_stime = t;
ptms->tms_utime = 0;
struct timeval tv = {0, 0};
_gettimeofday_r(r, &tv, NULL);
return (clock_t) tv.tv_sec;
}
#if defined( WITH_FRC ) || defined( WITH_RTC )
static uint64_t get_time_since_boot()
2016-11-02 17:17:28 +08:00
{
uint64_t microseconds = 0;
#ifdef WITH_FRC
#ifdef WITH_RTC
microseconds = s_microseconds_offset + esp_timer_get_time();
#else
microseconds = esp_timer_get_time();
#endif // WITH_RTC
2016-11-02 17:17:28 +08:00
#elif defined(WITH_RTC)
microseconds = get_rtc_time_us();
#endif // WITH_FRC
return microseconds;
}
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
2016-11-02 17:17:28 +08:00
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
{
(void) tz;
#if defined( WITH_FRC ) || defined( WITH_RTC )
2016-11-02 17:17:28 +08:00
if (tv) {
uint64_t microseconds = get_adjusted_boot_time() + get_time_since_boot();
tv->tv_sec = microseconds / 1000000;
2016-11-02 17:17:28 +08:00
tv->tv_usec = microseconds % 1000000;
}
return 0;
#else
__errno_r(r) = ENOSYS;
return -1;
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
}
int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
(void) tz;
#if defined( WITH_FRC ) || defined( WITH_RTC )
if (tv) {
adjtime_corr_stop();
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
uint64_t since_boot = get_time_since_boot();
set_boot_time(now - since_boot);
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
2016-11-21 17:15:37 +08:00
2017-08-16 14:58:30 +08:00
int usleep(useconds_t us)
{
const int us_per_tick = portTICK_PERIOD_MS * 1000;
if (us < us_per_tick) {
ets_delay_us((uint32_t) us);
} else {
/* since vTaskDelay(1) blocks for anywhere between 0 and portTICK_PERIOD_MS,
* round up to compensate.
*/
vTaskDelay((us + us_per_tick - 1) / us_per_tick);
}
return 0;
}
2017-09-01 02:18:14 +03:00
unsigned int sleep(unsigned int seconds)
{
usleep(seconds*1000000UL);
return 0;
}
2016-11-21 17:15:37 +08:00
uint32_t system_get_time(void)
{
#if defined( WITH_FRC ) || defined( WITH_RTC )
2016-11-21 17:15:37 +08:00
return get_time_since_boot();
#else
return 0;
#endif
}
uint32_t system_get_current_time(void) __attribute__((alias("system_get_time")));
uint32_t system_relative_time(uint32_t current_time)
{
#if defined( WITH_FRC ) || defined( WITH_RTC )
return get_time_since_boot() - current_time;
#else
return 0;
#endif
2016-11-21 17:15:37 +08:00
}
uint64_t system_get_rtc_time(void)
{
#ifdef WITH_RTC
return get_rtc_time_us();
#else
return 0;
#endif
}
void esp_sync_counters_rtc_and_frc()
{
#if defined( WITH_FRC ) && defined( WITH_RTC )
adjtime_corr_stop();
int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time();
set_boot_time(get_adjusted_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur));
#endif
}