ESP32 integrates two 12-bit SAR (`Successive Approximation Register <https://en.wikipedia.org/wiki/Successive_approximation_ADC>`_) ADCs (Analog to Digital Converters) and supports measurements on 18 channels (analog enabled pins). Some of these pins can be used to build a programmable gain amplifier which is used for the measurement of small analog signals.
API to support ADC2 is not available yet in ESP-IDF. The reason is that ADC2 is also used by Wi-Fi driver, and the application can only use ADC2 when Wi-Fi driver is not using it (and is not about to use it). This coordination mechanism is work in progress at the moment.
Taking an ADC reading involves configuring the ADC with the desired precision and attenuation by calling functions :cpp:func:`adc1_config_width` and :cpp:func:`adc1_config_channel_atten`. Configuration is done per channel, see :cpp:type:`adc1_channel_t`, set as a parameter of above functions.
Then it is possible to read ADC conversion result with :cpp:func:`adc1_get_raw`.
It is also possible to read the internal hall effect sensor via ADC1 by calling dedicated function :cpp:func:`hall_sensor_read`. Note that even the hall sensor is internal to ESP32, reading from it uses channels 0 and 3 of ADC1 (GPIO 36 and 39). Do not connect anything else to these pins and do not change their configuration. Otherwise it may affect the measurement of low value signal from the sesnor.
This API provides convenient way to configure ADC1 for reading from :doc:`ULP <../../api-guides/ulp>`. To do so, call function :cpp:func:`adc1_ulp_enable` and then set precision and attenuation as discussed above.
There is another specific function :cpp:func:`adc2_vref_to_gpio` used to route internal reference voltage to a GPIO pin. It comes handy to calibrate ADC reading and this is discussed in section :ref:`adc-api-adc-calibration`.
The input voltage in above example is from 0 to 1.1V (0 dB attenuation). The input range can be extended by setting higher attenuation, see :cpp:type:`adc_atten_t`.
The :component_file:`esp_adc_cal/include/esp_adc_cal.h` API provides functions to correct for differences in measured voltages caused by non-ideal ADC reference voltages in ESP32s. The ideal ADC reference voltage is 1100 mV however the reference voltage of different ESP32s can range from 1000 mV to 1200 mV.
Correcting the measured voltage using this API involves referencing a lookup table of voltages. The voltage obtained from the lookup table is then scaled and shifted by a gain and offset factor that is based on the ADC's reference voltage. This is done with function :cpp:func:`esp_adc_cal_get_characteristics`.