esp-idf/components/app_trace/app_trace_membufs_proto.c

373 lines
16 KiB
C
Raw Normal View History

2021-10-22 16:19:12 -04:00
/*
* SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
2021-10-22 16:19:12 -04:00
*
* SPDX-License-Identifier: Apache-2.0 OR MIT
2021-10-22 16:19:12 -04:00
*/
#include <sys/param.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_log.h"
#include "esp_cpu.h"
#include "esp_app_trace_membufs_proto.h"
/** Trace data header. Every user data chunk is prepended with this header.
* User allocates block with esp_apptrace_buffer_get and then fills it with data,
* in multithreading environment it can happen that tasks gets buffer and then gets interrupted,
* so it is possible that user data are incomplete when memory block is exposed to the host.
* In this case host SW will see that wr_sz < block_sz and will report error.
*/
typedef struct {
#if CONFIG_APPTRACE_SV_ENABLE
uint8_t block_sz; // size of allocated block for user data
uint8_t wr_sz; // size of actually written data
#else
uint16_t block_sz; // size of allocated block for user data
uint16_t wr_sz; // size of actually written data
#endif
} esp_tracedata_hdr_t;
/** TODO: docs
*/
typedef struct {
uint16_t block_sz; // size of allocated block for user data
} esp_hostdata_hdr_t;
#if CONFIG_APPTRACE_SV_ENABLE
#define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) (0)
#define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (_v_)
#define ESP_APPTRACE_USR_DATA_LEN_MAX(_hw_data_) 255UL
#else
#define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) ((_cid_) << 15)
#define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (~(1 << 15) & (_v_))
#define ESP_APPTRACE_USR_DATA_LEN_MAX(_hw_data_) (ESP_APPTRACE_INBLOCK(_hw_data_)->sz - sizeof(esp_tracedata_hdr_t))
#endif
#define ESP_APPTRACE_USR_BLOCK_RAW_SZ(_s_) ((_s_) + sizeof(esp_tracedata_hdr_t))
#define ESP_APPTRACE_INBLOCK_MARKER(_hw_data_) ((_hw_data_)->state.markers[(_hw_data_)->state.in_block % 2])
#define ESP_APPTRACE_INBLOCK_MARKER_UPD(_hw_data_, _v_) do {(_hw_data_)->state.markers[(_hw_data_)->state.in_block % 2] += (_v_);}while(0)
#define ESP_APPTRACE_INBLOCK(_hw_data_) (&(_hw_data_)->blocks[(_hw_data_)->state.in_block % 2])
const static char *TAG = "esp_apptrace";
static uint32_t esp_apptrace_membufs_down_buffer_write_nolock(esp_apptrace_membufs_proto_data_t *proto, uint8_t *data, uint32_t size);
esp_err_t esp_apptrace_membufs_init(esp_apptrace_membufs_proto_data_t *proto, const esp_apptrace_mem_block_t blocks_cfg[2])
{
// disabled by default
esp_apptrace_rb_init(&proto->rb_down, NULL, 0);
// membufs proto init
for (unsigned i = 0; i < 2; i++) {
proto->blocks[i].start = blocks_cfg[i].start;
proto->blocks[i].sz = blocks_cfg[i].sz;
proto->state.markers[i] = 0;
}
proto->state.in_block = 0;
#if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
esp_apptrace_rb_init(&proto->rb_pend, proto->pending_data,
sizeof(proto->pending_data));
#endif
return ESP_OK;
}
void esp_apptrace_membufs_down_buffer_config(esp_apptrace_membufs_proto_data_t *data, uint8_t *buf, uint32_t size)
{
esp_apptrace_rb_init(&data->rb_down, buf, size);
}
// assumed to be protected by caller from multi-core/thread access
static esp_err_t esp_apptrace_membufs_swap(esp_apptrace_membufs_proto_data_t *proto)
{
int prev_block_num = proto->state.in_block % 2;
int new_block_num = prev_block_num ? (0) : (1);
esp_err_t res = ESP_OK;
res = proto->hw->swap_start(proto->state.in_block);
if (res != ESP_OK) {
return res;
}
proto->state.markers[new_block_num] = 0;
// switch to new block
proto->state.in_block++;
proto->hw->swap(new_block_num);
// handle data from host
esp_hostdata_hdr_t *hdr = (esp_hostdata_hdr_t *)proto->blocks[new_block_num].start;
// ESP_APPTRACE_LOGV("Host data %d, sz %d @ %p", proto->hw->host_data_pending(), hdr->block_sz, hdr);
if (proto->hw->host_data_pending() && hdr->block_sz > 0) {
// TODO: add support for multiple blocks from host, currently there is no need for that
uint8_t *p = proto->blocks[new_block_num].start + proto->blocks[new_block_num].sz;
2021-10-22 16:19:12 -04:00
ESP_APPTRACE_LOGD("Recvd %d bytes from host (@ 0x%x) [%x %x %x %x %x %x %x %x .. %x %x %x %x %x %x %x %x]",
hdr->block_sz, proto->blocks[new_block_num].start,
*(proto->blocks[new_block_num].start+0), *(proto->blocks[new_block_num].start+1),
*(proto->blocks[new_block_num].start+2), *(proto->blocks[new_block_num].start+3),
*(proto->blocks[new_block_num].start+4), *(proto->blocks[new_block_num].start+5),
*(proto->blocks[new_block_num].start+6), *(proto->blocks[new_block_num].start+7),
*(p-8), *(p-7), *(p-6), *(p-5), *(p-4), *(p-3), *(p-2), *(p-1));
uint32_t sz = esp_apptrace_membufs_down_buffer_write_nolock(proto, (uint8_t *)(hdr+1), hdr->block_sz);
if (sz != hdr->block_sz) {
ESP_APPTRACE_LOGE("Failed to write %d bytes to down buffer (%d %d)!", hdr->block_sz - sz, hdr->block_sz, sz);
}
hdr->block_sz = 0;
}
#if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
// copy pending data to block if any
while (proto->state.markers[new_block_num] < proto->blocks[new_block_num].sz) {
uint32_t read_sz = esp_apptrace_rb_read_size_get(&proto->rb_pend);
if (read_sz == 0) {
break; // no more data in pending buffer
}
if (read_sz > proto->blocks[new_block_num].sz - proto->state.markers[new_block_num]) {
read_sz = proto->blocks[new_block_num].sz - proto->state.markers[new_block_num];
}
uint8_t *ptr = esp_apptrace_rb_consume(&proto->rb_pend, read_sz);
if (!ptr) {
assert(false && "Failed to consume pended bytes!!");
break;
}
ESP_APPTRACE_LOGD("Pump %d pend bytes [%x %x %x %x : %x %x %x %x : %x %x %x %x : %x %x...%x %x]",
read_sz, *(ptr+0), *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
*(ptr+5), *(ptr+6), *(ptr+7), *(ptr+8), *(ptr+9), *(ptr+10), *(ptr+11), *(ptr+12), *(ptr+13), *(ptr+read_sz-2), *(ptr+read_sz-1));
memcpy(proto->blocks[new_block_num].start + proto->state.markers[new_block_num], ptr, read_sz);
proto->state.markers[new_block_num] += read_sz;
}
#endif
proto->hw->swap_end(proto->state.in_block, proto->state.markers[prev_block_num]);
return res;
}
static esp_err_t esp_apptrace_membufs_swap_waitus(esp_apptrace_membufs_proto_data_t *proto, esp_apptrace_tmo_t *tmo)
{
int res;
while ((res = esp_apptrace_membufs_swap(proto)) != ESP_OK) {
res = esp_apptrace_tmo_check(tmo);
if (res != ESP_OK) {
break;
}
}
return res;
}
uint8_t *esp_apptrace_membufs_down_buffer_get(esp_apptrace_membufs_proto_data_t *proto, uint32_t *size, esp_apptrace_tmo_t *tmo)
{
uint8_t *ptr = NULL;
while (1) {
uint32_t sz = esp_apptrace_rb_read_size_get(&proto->rb_down);
if (sz != 0) {
*size = MIN(*size, sz);
ptr = esp_apptrace_rb_consume(&proto->rb_down, *size);
if (!ptr) {
assert(false && "Failed to consume bytes from down buffer!");
}
break;
}
// may need to flush
if (proto->hw->host_data_pending()) {
ESP_APPTRACE_LOGD("force flush");
int res = esp_apptrace_membufs_swap_waitus(proto, tmo);
if (res != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to switch to another block to recv data from host!");
/*do not return error because data can be in down buffer already*/
}
} else {
// check tmo only if there is no data from host
int res = esp_apptrace_tmo_check(tmo);
if (res != ESP_OK) {
return NULL;
}
}
}
return ptr;
}
esp_err_t esp_apptrace_membufs_down_buffer_put(esp_apptrace_membufs_proto_data_t *proto, uint8_t *ptr, esp_apptrace_tmo_t *tmo)
{
/* nothing todo */
return ESP_OK;
}
static uint32_t esp_apptrace_membufs_down_buffer_write_nolock(esp_apptrace_membufs_proto_data_t *proto, uint8_t *data, uint32_t size)
{
uint32_t total_sz = 0;
while (total_sz < size) {
ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock WRS %d-%d-%d %d", proto->rb_down.wr, proto->rb_down.rd,
proto->rb_down.cur_size, size);
uint32_t wr_sz = esp_apptrace_rb_write_size_get(&proto->rb_down);
if (wr_sz == 0) {
break;
}
if (wr_sz > size - total_sz) {
wr_sz = size - total_sz;
}
ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d", wr_sz);
uint8_t *ptr = esp_apptrace_rb_produce(&proto->rb_down, wr_sz);
if (!ptr) {
assert(false && "Failed to produce bytes to down buffer!");
}
ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d to 0x%x from 0x%x", wr_sz, ptr, data + total_sz + wr_sz);
memcpy(ptr, data + total_sz, wr_sz);
total_sz += wr_sz;
ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d/%d", wr_sz, total_sz);
}
return total_sz;
}
static inline uint8_t *esp_apptrace_membufs_wait4buf(esp_apptrace_membufs_proto_data_t *proto, uint16_t size, esp_apptrace_tmo_t *tmo, int *pended)
{
uint8_t *ptr = NULL;
int res = esp_apptrace_membufs_swap_waitus(proto, tmo);
if (res != ESP_OK) {
return NULL;
}
#if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
// check if we still have pending data
if (esp_apptrace_rb_read_size_get(&proto->rb_pend) > 0) {
// if after block switch we still have pending data (not all pending data have been pumped to block)
// alloc new pending buffer
*pended = 1;
ptr = esp_apptrace_rb_produce(&proto->rb_pend, size);
if (!ptr) {
ESP_APPTRACE_LOGE("Failed to alloc pend buf 1: w-r-s %d-%d-%d!", proto->rb_pend.wr, proto->rb_pend.rd, proto->rb_pend.cur_size);
}
} else
#endif
{
// update block pointers
if (ESP_APPTRACE_INBLOCK_MARKER(proto) + size > ESP_APPTRACE_INBLOCK(proto)->sz) {
#if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
*pended = 1;
ptr = esp_apptrace_rb_produce(&proto->rb_pend, size);
if (ptr == NULL) {
ESP_APPTRACE_LOGE("Failed to alloc pend buf 2: w-r-s %d-%d-%d!", proto->rb_pend.wr, proto->rb_pend.rd, proto->rb_pend.cur_size);
}
#endif
} else {
*pended = 0;
ptr = ESP_APPTRACE_INBLOCK(proto)->start + ESP_APPTRACE_INBLOCK_MARKER(proto);
}
}
return ptr;
}
static inline uint8_t *esp_apptrace_membufs_pkt_start(uint8_t *ptr, uint16_t size)
{
// it is safe to use esp_cpu_get_core_id() in macro call because arg is used only once inside it
((esp_tracedata_hdr_t *)ptr)->block_sz = ESP_APPTRACE_USR_BLOCK_CORE(esp_cpu_get_core_id()) | size;
((esp_tracedata_hdr_t *)ptr)->wr_sz = 0;
return ptr + sizeof(esp_tracedata_hdr_t);
}
static inline void esp_apptrace_membufs_pkt_end(uint8_t *ptr)
{
esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t));
// update written size
hdr->wr_sz = hdr->block_sz;
}
uint8_t *esp_apptrace_membufs_up_buffer_get(esp_apptrace_membufs_proto_data_t *proto, uint32_t size, esp_apptrace_tmo_t *tmo)
{
uint8_t *buf_ptr = NULL;
if (size > ESP_APPTRACE_USR_DATA_LEN_MAX(proto)) {
ESP_APPTRACE_LOGE("Too large user data size %d!", size);
return NULL;
}
// check for data in the pending buffer
#if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
if (esp_apptrace_rb_read_size_get(&proto->rb_pend) > 0) {
// if we have buffered data try to switch block
esp_apptrace_membufs_swap(proto);
// if switch was successful, part or all pended data have been copied to block
}
if (esp_apptrace_rb_read_size_get(&proto->rb_pend) > 0) {
// if we have buffered data alloc new pending buffer
ESP_APPTRACE_LOGD("Get %d bytes from PEND buffer", size);
buf_ptr = esp_apptrace_rb_produce(&proto->rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
if (buf_ptr == NULL) {
int pended_buf;
buf_ptr = esp_apptrace_membufs_wait4buf(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf);
if (buf_ptr && !pended_buf) {
ESP_APPTRACE_LOGD("Get %d bytes from block", size);
// update cur block marker
ESP_APPTRACE_INBLOCK_MARKER_UPD(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
}
}
} else {
#else
if (1) {
#endif
if (ESP_APPTRACE_INBLOCK_MARKER(proto) + ESP_APPTRACE_USR_BLOCK_RAW_SZ(size) > ESP_APPTRACE_INBLOCK(proto)->sz) {
#if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
ESP_APPTRACE_LOGD("Block full. Get %d bytes from PEND buffer", size);
buf_ptr = esp_apptrace_rb_produce(&proto->rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
#endif
if (buf_ptr == NULL) {
int pended_buf;
ESP_APPTRACE_LOGD(" full. Get %d bytes from pend buffer", size);
buf_ptr = esp_apptrace_membufs_wait4buf(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf);
if (buf_ptr && !pended_buf) {
ESP_APPTRACE_LOGD("Got %d bytes from block", size);
// update cur block marker
ESP_APPTRACE_INBLOCK_MARKER_UPD(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
}
}
} else {
ESP_APPTRACE_LOGD("Get %d bytes from buffer", size);
// fit to curr nlock
buf_ptr = ESP_APPTRACE_INBLOCK(proto)->start + ESP_APPTRACE_INBLOCK_MARKER(proto);
// update cur block marker
ESP_APPTRACE_INBLOCK_MARKER_UPD(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
}
}
if (buf_ptr) {
buf_ptr = esp_apptrace_membufs_pkt_start(buf_ptr, size);
}
return buf_ptr;
}
esp_err_t esp_apptrace_membufs_up_buffer_put(esp_apptrace_membufs_proto_data_t *proto, uint8_t *ptr, esp_apptrace_tmo_t *tmo)
{
esp_apptrace_membufs_pkt_end(ptr);
// TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
// TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
// higher prio tasks and the latter can not allocate buffers at all
// this is abnormal situation can be detected on host which will receive only uncompleted buffers
// workaround: use own memcpy which will kick-off dead tracing calls
return ESP_OK;
}
esp_err_t esp_apptrace_membufs_flush_nolock(esp_apptrace_membufs_proto_data_t *proto, uint32_t min_sz, esp_apptrace_tmo_t *tmo)
{
int res = ESP_OK;
if (ESP_APPTRACE_INBLOCK_MARKER(proto) < min_sz) {
ESP_APPTRACE_LOGI("Ignore flush request for min %d bytes. Bytes in block: %d.", min_sz, ESP_APPTRACE_INBLOCK_MARKER(proto));
return ESP_OK;
}
// switch block while size of data (including that in pending buffer) is more than min size
while (ESP_APPTRACE_INBLOCK_MARKER(proto) > min_sz) {
ESP_APPTRACE_LOGD("Try to flush %d bytes. Wait until block switch for %lld us", ESP_APPTRACE_INBLOCK_MARKER(proto), tmo->tmo);
res = esp_apptrace_membufs_swap_waitus(proto, tmo);
if (res != ESP_OK) {
if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE)
ESP_APPTRACE_LOGW("Failed to switch to another block in %lld us!", tmo->tmo);
else
ESP_APPTRACE_LOGE("Failed to switch to another block in %lld us!", tmo->tmo);
return res;
}
}
return res;
}