I2C is a serial, synchronous, half-duplex communication protocol that allows co-existence of multiple masters and slaves on the same bus. The I2C bus consists of two lines: serial data line (SDA) and serial clock (SCL). Both lines require pull-up resistors.
With such advantages as simplicity and low manufacturing cost, I2C is mostly used for communication of low-speed peripheral devices over short distances (within one foot).
{IDF_TARGET_NAME} has only one I2C controller (also referred to as port) which is responsible for handling communications on I2C bus. The I2C controller can operate as master or slave.
..only:: not esp32c3
{IDF_TARGET_NAME} has two I2C controllers (also referred to as ports) which are responsible for handling communications on the I2C bus. Each I2C controller can operate as master or slave. As an example, one controller can act as a master and the other as a slave at the same time.
After that, initialize the configuration for a given I2C port. For this, call the function :cpp:func:`i2c_param_config` and pass to it the port number and the structure :cpp:type:`i2c_config_t`.
At this stage, :cpp:func:`i2c_param_config` also sets a few other I2C configuration parameters to default values that are defined by the I2C specification. For more details on the values and how to modify them, see :ref:`i2c-api-customized-configuration`.
**Clock sources allocator** is added for supporting different clock sources. The clock allocator will choose one clock source that meets all the requirements of frequency and capability (as requested in :cpp:member:`i2c_config_t::clk_flags`).
When :cpp:member:`i2c_config_t::clk_flags` is 0, the clock allocator will select only according to the desired frequency. If no special capabilities are needed, such as APB, you can configure the clock allocator to select the source clock only according to the desired frequency. For this, set :cpp:member:`i2c_config_t::clk_flags` to 0. For clock characteristics, see the table below.
..note::
A clock is not a valid option, if it doesn't meet the requested capabilities, i.e. any bit of requested capabilities (clk_flags) is 0 in the clock's capabilities.
..only:: esp32
..list-table:: Characteristics of {IDF_TARGET_NAME} clock sources
:widths:5 5 50 20
:header-rows:1
* - Clock name
- Clock frequency
- MAX freq for SCL
- Clock capabilities
* - APB clock
- 80 MHz
- 4 MHz
- /
..only:: esp32s2
..list-table:: Characteristics of {IDF_TARGET_NAME} clock sources
The clock frequency of SCL will be influenced by the pull-up resistors and wire capacitance (or might slave capacitance) together. Therefore, users need to choose correct pull-up resistors by themselves to make the frequency accurate. It is recommended by I2C protocol that the pull-up resistors commonly range from 1KOhms to 10KOhms, but different frequencies need different resistors.
Generally speaking, the higher frequency is selected, the smaller resistor should be used (but not less than 1KOhms). This is because high resistor will decline the current, which will lengthen the rising time and reduce the frequency. Usually, range 2KOhms to 5KOhms is what we recommend, but users also might need to make some adjustment depends on their reality.
- Port number, one of the two port numbers from :cpp:type:`i2c_port_t`
- Master or slave, selected from :cpp:type:`i2c_mode_t`
- (Slave only) Size of buffers to allocate for sending and receiving data. As I2C is a master-centric bus, data can only go from the slave to the master at the master's request. Therefore, the slave will usually have a send buffer where the slave application writes data. The data remains in the send buffer to be read by the master at the master's own discretion.
{IDF_TARGET_NAME}'s I2C controller operating as master is responsible for establishing communication with I2C slave devices and sending commands to trigger a slave to action, for example, to take a measurement and send the readings back to the master.
For better process organization, the driver provides a container, called a "command link", that should be populated with a sequence of commands and then passed to the I2C controller for execution.
Both functions :cpp:func:`i2c_master_write_byte` and :cpp:func:`i2c_master_write` have an additional argument specifying whether the master should ensure that it has received the ACK bit.
2. Trigger the execution of the command link by I2C controller by calling :cpp:func:`i2c_master_cmd_begin`. Once the execution is triggered, the command link cannot be modified.
3. After the commands are transmitted, release the resources used by the command link by calling :cpp:func:`i2c_cmd_link_delete`.
Compared to writing data, the command link is populated in Step 4 not with ``i2c_master_write...`` functions but with :cpp:func:`i2c_master_read_byte` and / or :cpp:func:`i2c_master_read`. Also, the last read in Step 5 is configured so that the master does not provide the ACK bit.
Indicating Write or Read
""""""""""""""""""""""""
After sending a slave address (see Step 3 on both diagrams above), the master either writes or reads from the slave.
The information on what the master will actually do is hidden in the least significant bit of the slave's address.
For this reason, the command link sent by the master to write data to the slave contains the address ``(ESP_SLAVE_ADDR << 1) | I2C_MASTER_WRITE`` and looks as follows:
Whenever the master writes data to the slave, the slave will automatically store it in the receive buffer. This allows the slave application to call the function :cpp:func:`i2c_slave_read_buffer` at its own discretion. This function also has a parameter to specify block time if no data is in the receive buffer. This will allow the slave application to wait with a specified timeout for data to arrive to the buffer.
-:cpp:func:`i2c_slave_write_buffer`
The send buffer is used to store all the data that the slave wants to send to the master in FIFO order. The data stays there until the master requests for it. The function :cpp:func:`i2c_slave_write_buffer` has a parameter to specify block time if the send buffer is full. This will allow the slave application to wait with a specified timeout for the adequate amount of space to become available in the send buffer.
A code example showing how to use these functions can be found in :example:`peripherals/i2c`.
During driver installation, an interrupt handler is installed by default. However, you can register your own interrupt handler instead of the default one by calling the function :cpp:func:`i2c_isr_register`. When implementing your own interrupt handler, refer to *{IDF_TARGET_NAME} Technical Reference Manual* > *I2C Controller (I2C)* > *Interrupts* [`PDF <{IDF_TARGET_TRM_EN_URL}#i2c>`__] for the description of interrupts triggered by the I2C controller.
As mentioned at the end of Section :ref:`i2c-api-configure-driver`, when the function :cpp:func:`i2c_param_config` initializes the driver configuration for an I2C port, it also sets several I2C communication parameters to default values defined in the `I2C specification <https://www.nxp.com/docs/en/user-guide/UM10204.pdf>`_. Some other related parameters are pre-configured in registers of the I2C controller.
All these parameters can be changed to user-defined values by calling dedicated functions given in the table below. Please note that the timing values are defined in APB clock cycles. The frequency of APB is specified in :cpp:type:`I2C_APB_CLK_FREQ`.
Each of the above functions has a *_get_* counterpart to check the currently set value. For example, to check the I2C timeout value, call :cpp:func:`i2c_get_timeout`.
To check the default parameter values which are set during the driver configuration process, please refer to the file :component_file:`driver/i2c.c` and look for defines with the suffix ``_DEFAULT``.
You can also select different pins for SDA and SCL signals and alter the configuration of pull-ups with the function :cpp:func:`i2c_set_pin`. If you want to modify already entered values, use the function :cpp:func:`i2c_param_config`.
{IDF_TARGET_NAME}'s internal pull-ups are in the range of tens of kOhm, which is, in most cases, insufficient for use as I2C pull-ups. Users are advised to use external pull-ups with values described in the `I2C specification <https://www.nxp.com/docs/en/user-guide/UM10204.pdf>`_.
The majority of I2C driver functions either return ``ESP_OK`` on successful completion or a specific error code on failure. It is a good practice to always check the returned values and implement error handling. The driver also prints out log messages that contain error details, e.g., when checking the validity of entered configuration. For details please refer to the file :component_file:`driver/i2c.c` and look for defines with the suffix ``_ERR_STR``.
Use dedicated interrupts to capture communication failures. For instance, if a slave stretches the clock for too long while preparing the data to send back to master, the interrupt ``I2C_TIME_OUT_INT`` will be triggered. For detailed information, see :ref:`i2c-api-interrupt-handling`.
In case of a communication failure, you can reset the internal hardware buffers by calling the functions :cpp:func:`i2c_reset_tx_fifo` and :cpp:func:`i2c_reset_rx_fifo` for the send and receive buffers respectively.
When the I2C communication is established with the function :cpp:func:`i2c_driver_install` and is not required for some substantial amount of time, the driver may be deinitialized to release allocated resources by calling :cpp:func:`i2c_driver_delete`.
Before calling :cpp:func:`i2c_driver_delete` to remove i2c driver, please make sure that all threads have stopped using the driver in any way, because this function does not guarantee thread safety.