799 lines
27 KiB
C++
Raw Normal View History

2016-08-17 23:08:22 +08:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "catch.hpp"
#include "nvs.hpp"
#include "nvs_flash.h"
#include "spi_flash_emulation.h"
#include <sstream>
#include <iostream>
using namespace std;
using namespace nvs;
stringstream s_perf;
void dumpBytes(const uint8_t* data, size_t count)
{
for (uint32_t i = 0; i < count; ++i) {
if (i % 32 == 0) {
printf("%08x ", i);
}
printf("%02x ", data[i]);
if ((i + 1) % 32 == 0) {
printf("\n");
}
}
}
TEST_CASE("crc32 behaves as expected", "[nvs]")
{
Item item1;
item1.datatype = ItemType::I32;
item1.nsIndex = 1;
item1.crc32 = 0;
item1.reserved = 0xff;
fill_n(item1.key, sizeof(item1.key), 0xbb);
fill_n(item1.data, sizeof(item1.data), 0xaa);
auto crc32_1 = item1.calculateCrc32();
Item item2 = item1;
item2.crc32 = crc32_1;
CHECK(crc32_1 == item2.calculateCrc32());
item2 = item1;
item2.nsIndex = 2;
CHECK(crc32_1 != item2.calculateCrc32());
item2 = item1;
item2.datatype = ItemType::U32;
CHECK(crc32_1 != item2.calculateCrc32());
item2 = item1;
strncpy(item2.key, "foo", Item::MAX_KEY_LENGTH);
2016-08-17 23:08:22 +08:00
CHECK(crc32_1 != item2.calculateCrc32());
}
TEST_CASE("starting with empty flash, page is in uninitialized state", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.state() == Page::PageState::INVALID);
CHECK(page.load(0) == ESP_OK);
CHECK(page.state() == Page::PageState::UNINITIALIZED);
}
TEST_CASE("can distinguish namespaces", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
int32_t val1 = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val1, sizeof(val1)) == ESP_OK);
int32_t val2 = 0x23456789;
CHECK(page.writeItem(2, ItemType::I32, "intval1", &val2, sizeof(val2)) == ESP_OK);
int32_t readVal;
CHECK(page.readItem(2, ItemType::I32, "intval1", &readVal, sizeof(readVal)) == ESP_OK);
CHECK(readVal == val2);
}
TEST_CASE("reading with different type causes type mismatch error", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
int32_t val = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
CHECK(page.readItem(1, ItemType::U32, "intval1", &val, sizeof(val)) == ESP_ERR_NVS_TYPE_MISMATCH);
}
TEST_CASE("when page is erased, it's state becomes UNITIALIZED", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
int32_t val = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
CHECK(page.erase() == ESP_OK);
CHECK(page.state() == Page::PageState::UNINITIALIZED);
}
TEST_CASE("when writing and erasing, used/erased counts are updated correctly", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
CHECK(page.getUsedEntryCount() == 0);
CHECK(page.getErasedEntryCount() == 0);
uint32_t foo1 = 0;
CHECK(page.writeItem(1, "foo1", foo1) == ESP_OK);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.writeItem(2, "foo1", foo1) == ESP_OK);
CHECK(page.getUsedEntryCount() == 2);
CHECK(page.eraseItem<uint32_t>(2, "foo1") == ESP_OK);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == 1);
for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", i);
CHECK(page.writeItem(1, name, i) == ESP_OK);
}
CHECK(page.getUsedEntryCount() == Page::ENTRY_COUNT - 1);
CHECK(page.getErasedEntryCount() == 1);
for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", i);
CHECK(page.eraseItem(1, itemTypeOf<size_t>(), name) == ESP_OK);
}
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == Page::ENTRY_COUNT - 1);
}
TEST_CASE("when page is full, adding an element fails", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", i);
CHECK(page.writeItem(1, name, i) == ESP_OK);
}
CHECK(page.writeItem(1, "foo", 64UL) == ESP_ERR_NVS_PAGE_FULL);
}
TEST_CASE("page maintains its seq number")
{
SpiFlashEmulator emu(1);
{
Page page;
CHECK(page.load(0) == ESP_OK);
CHECK(page.setSeqNumber(123) == ESP_OK);
int32_t val = 42;
CHECK(page.writeItem(1, ItemType::I32, "dummy", &val, sizeof(val)) == ESP_OK);
}
{
Page page;
CHECK(page.load(0) == ESP_OK);
uint32_t seqno;
CHECK(page.getSeqNumber(seqno) == ESP_OK);
CHECK(seqno == 123);
}
}
TEST_CASE("can write and read variable length data", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
size_t len = strlen(str);
CHECK(page.writeItem(1, "stuff1", 42) == ESP_OK);
CHECK(page.writeItem(1, "stuff2", 1) == ESP_OK);
CHECK(page.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
CHECK(page.writeItem(1, "stuff3", 2) == ESP_OK);
CHECK(page.writeItem(1, ItemType::BLOB, "baz", str, len) == ESP_OK);
CHECK(page.writeItem(1, "stuff4", 0x7abbccdd) == ESP_OK);
char buf[sizeof(str) + 16];
int32_t value;
CHECK(page.readItem(1, "stuff1", value) == ESP_OK);
CHECK(value == 42);
CHECK(page.readItem(1, "stuff2", value) == ESP_OK);
CHECK(value == 1);
CHECK(page.readItem(1, "stuff3", value) == ESP_OK);
CHECK(value == 2);
CHECK(page.readItem(1, "stuff4", value) == ESP_OK);
CHECK(value == 0x7abbccdd);
fill_n(buf, sizeof(buf), 0xff);
CHECK(page.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
fill_n(buf, sizeof(buf), 0xff);
CHECK(page.readItem(1, ItemType::BLOB, "baz", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str)) == 0);
}
TEST_CASE("can init PageManager in empty flash", "[nvs]")
{
SpiFlashEmulator emu(4);
PageManager pm;
CHECK(pm.load(0, 4) == ESP_OK);
}
TEST_CASE("PageManager adds page in the correct order", "[nvs]")
{
const size_t pageCount = 8;
SpiFlashEmulator emu(pageCount);
uint32_t pageNo[pageCount] = { -1U, 50, 11, -1U, 23, 22, 24, 49};
for (uint32_t i = 0; i < pageCount; ++i) {
Page p;
p.load(i);
if (pageNo[i] != -1U) {
p.setSeqNumber(pageNo[i]);
p.writeItem(1, "foo", 10U);
}
}
PageManager pageManager;
CHECK(pageManager.load(0, pageCount) == ESP_OK);
uint32_t lastSeqNo = 0;
for (auto it = std::begin(pageManager); it != std::end(pageManager); ++it) {
uint32_t seqNo;
CHECK(it->getSeqNumber(seqNo) == ESP_OK);
CHECK(seqNo > lastSeqNo);
}
}
TEST_CASE("can init storage in empty flash", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
s_perf << "Time to init empty storage (4 sectors): " << emu.getTotalTime() << " us" << std::endl;
}
TEST_CASE("storage doesn't add duplicates within one page", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
int bar = 0;
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
Page page;
page.load(4);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == 1);
}
TEST_CASE("can write one item a thousand times", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
REQUIRE(storage.writeItem(1, "i", static_cast<int>(i)) == ESP_OK);
}
s_perf << "Time to write one item a thousand times: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << " " << emu.getWriteOps() << " " << emu.getReadOps() << " " << emu.getWriteBytes() << " " << emu.getReadBytes() << ")" << std::endl;
}
TEST_CASE("storage doesn't add duplicates within multiple pages", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
int bar = 0;
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
CHECK(storage.writeItem(1, "foo", static_cast<int>(bar)) == ESP_OK);
}
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
Page page;
page.load(4);
CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_ERR_NVS_NOT_FOUND);
page.load(5);
CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_OK);
}
TEST_CASE("can write and read variable length data lots of times", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
char buf[sizeof(str) + 16];
size_t len = strlen(str);
for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
CAPTURE(i);
CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
CHECK(storage.writeItem(1, "foo", static_cast<uint32_t>(i)) == ESP_OK);
uint32_t value;
CHECK(storage.readItem(1, "foo", value) == ESP_OK);
CHECK(value == i);
fill_n(buf, sizeof(buf), 0xff);
CHECK(storage.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
}
s_perf << "Time to write one string and one integer a thousand times: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << " " << emu.getWriteOps() << " " << emu.getReadOps() << " " << emu.getWriteBytes() << " " << emu.getReadBytes() << ")" << std::endl;
}
TEST_CASE("can get length of variable length data", "[nvs]")
{
SpiFlashEmulator emu(8);
emu.randomize(200);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
size_t len = strlen(str);
CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
size_t dataSize;
CHECK(storage.getItemDataSize(1, ItemType::SZ, "foobaar", dataSize) == ESP_OK);
CHECK(dataSize == len + 1);
CHECK(storage.writeItem(2, ItemType::BLOB, "foobaar", str, len) == ESP_OK);
CHECK(storage.getItemDataSize(2, ItemType::BLOB, "foobaar", dataSize) == ESP_OK);
CHECK(dataSize == len);
}
TEST_CASE("can create namespaces", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
uint8_t nsi;
CHECK(storage.createOrOpenNamespace("wifi", false, nsi) == ESP_ERR_NVS_NOT_FOUND);
CHECK(storage.createOrOpenNamespace("wifi", true, nsi) == ESP_OK);
Page page;
page.load(4);
CHECK(page.findItem(Page::NS_INDEX, ItemType::U8, "wifi") == ESP_OK);
}
TEST_CASE("storage may become full", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 3; ++i) {
char name[Item::MAX_KEY_LENGTH + 1];
snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
REQUIRE(storage.writeItem(1, name, static_cast<int>(i)) == ESP_OK);
}
REQUIRE(storage.writeItem(1, "foo", 10) == ESP_ERR_NVS_NOT_ENOUGH_SPACE);
}
TEST_CASE("can modify an item on a page which will be erased", "[nvs]")
{
SpiFlashEmulator emu(2);
Storage storage;
CHECK(storage.init(0, 2) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 3 + 1; ++i) {
REQUIRE(storage.writeItem(1, "foo", 42U) == ESP_OK);
}
}
#define TEST_ESP_ERR(rc, res) CHECK((rc) == (res))
#define TEST_ESP_OK(rc) CHECK((rc) == ESP_OK)
TEST_CASE("nvs api tests", "[nvs]")
{
SpiFlashEmulator emu(10);
emu.randomize(100);
nvs_handle handle_1;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_ERR(nvs_open("namespace1", NVS_READWRITE, &handle_1), ESP_ERR_NVS_NOT_INITIALIZED);
for (uint16_t i = NVS_FLASH_SECTOR; i <NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
spi_flash_erase_sector(i);
}
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
// TEST_ESP_ERR(nvs_set_i32(handle_1, "foo", 0x12345678), ESP_ERR_NVS_READ_ONLY);
// nvs_close(handle_1);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789));
nvs_handle handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", 0x3456789a));
const char* str = "value 0123456789abcdef0123456789abcdef";
TEST_ESP_OK(nvs_set_str(handle_2, "key", str));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(0x3456789a == v2);
char buf[strlen(str) + 1];
size_t buf_len = sizeof(buf);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str));
}
TEST_CASE("wifi test", "[nvs]")
{
SpiFlashEmulator emu(10);
emu.randomize(10);
nvs_handle handle;
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &handle));
uint8_t opmode = 2;
if (nvs_get_u8(handle, "wifi.opmode", &opmode) != ESP_OK) {
TEST_ESP_OK(nvs_set_u8(handle, "wifi.opmode", opmode));
}
}
TEST_CASE("can init storage from flash with random contents", "[nvs]")
{
SpiFlashEmulator emu(10);
emu.randomize(42);
nvs_handle handle;
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &handle));
uint8_t opmode = 2;
if (nvs_get_u8(handle, "wifi.opmode", &opmode) != ESP_OK) {
TEST_ESP_OK(nvs_set_u8(handle, "wifi.opmode", opmode));
}
}
TEST_CASE("nvs api tests, starting with random data in flash", "[nvs][.][long]")
{
for (size_t count = 0; count < 10000; ++count) {
SpiFlashEmulator emu(10);
emu.randomize(static_cast<uint32_t>(count));
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle handle_1;
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
for (size_t i = 0; i < 500; ++i) {
nvs_handle handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789 % (i + 1)));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", static_cast<int32_t>(i)));
const char* str = "value 0123456789abcdef0123456789abcdef %09d";
char str_buf[128];
snprintf(str_buf, sizeof(str_buf), str, i + count * 1024);
TEST_ESP_OK(nvs_set_str(handle_2, "key", str_buf));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 % (i + 1) == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(static_cast<int32_t>(i) == v2);
char buf[128];
size_t buf_len = sizeof(buf);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str_buf));
nvs_close(handle_2);
}
nvs_close(handle_1);
}
}
extern "C" void nvs_dump();
class RandomTest {
2016-08-17 23:08:22 +08:00
static const size_t nKeys = 9;
2016-08-17 23:08:22 +08:00
int32_t v1 = 0, v2 = 0;
uint64_t v3 = 0, v4 = 0;
static const size_t strBufLen = 1024;
2016-08-17 23:08:22 +08:00
char v5[strBufLen], v6[strBufLen], v7[strBufLen], v8[strBufLen], v9[strBufLen];
bool written[nKeys];
public:
RandomTest()
{
std::fill_n(written, nKeys, false);
}
template<typename TGen>
esp_err_t doRandomThings(nvs_handle handle, TGen gen, size_t& count) {
2016-08-17 23:08:22 +08:00
const char* keys[] = {"foo", "bar", "longkey_0123456", "another key", "param1", "param2", "param3", "param4", "param5"};
const ItemType types[] = {ItemType::I32, ItemType::I32, ItemType::U64, ItemType::U64, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ};
void* values[] = {&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9};
const size_t nKeys = sizeof(keys) / sizeof(keys[0]);
static_assert(nKeys == sizeof(types) / sizeof(types[0]), "");
static_assert(nKeys == sizeof(values) / sizeof(values[0]), "");
auto randomRead = [&](size_t index) -> esp_err_t {
switch (types[index]) {
case ItemType::I32:
{
int32_t val;
auto err = nvs_get_i32(handle, keys[index], &val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(val == *reinterpret_cast<int32_t*>(values[index]));
}
break;
2016-08-17 23:08:22 +08:00
}
case ItemType::U64:
{
uint64_t val;
auto err = nvs_get_u64(handle, keys[index], &val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(val == *reinterpret_cast<uint64_t*>(values[index]));
}
break;
2016-08-17 23:08:22 +08:00
}
case ItemType::SZ:
{
char buf[strBufLen];
size_t len = strBufLen;
auto err = nvs_get_str(handle, keys[index], buf, &len);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(strncmp(buf, reinterpret_cast<const char*>(values[index]), strBufLen) == 0);
}
break;
2016-08-17 23:08:22 +08:00
}
default:
assert(0);
2016-08-17 23:08:22 +08:00
}
return ESP_OK;
};
auto randomWrite = [&](size_t index) -> esp_err_t {
switch (types[index]) {
case ItemType::I32:
{
int32_t val = static_cast<int32_t>(gen());
auto err = nvs_set_i32(handle, keys[index], val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
*reinterpret_cast<int32_t*>(values[index]) = val;
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
*reinterpret_cast<int32_t*>(values[index]) = val;
break;
2016-08-17 23:08:22 +08:00
}
case ItemType::U64:
{
uint64_t val = static_cast<uint64_t>(gen());
auto err = nvs_set_u64(handle, keys[index], val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
*reinterpret_cast<uint64_t*>(values[index]) = val;
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
*reinterpret_cast<uint64_t*>(values[index]) = val;
break;
2016-08-17 23:08:22 +08:00
}
case ItemType::SZ:
{
char buf[strBufLen];
size_t len = strBufLen;
size_t strLen = gen() % (strBufLen - 1);
std::generate_n(buf, strLen, [&]() -> char {
const char c = static_cast<char>(gen() % 127);
return (c < 32) ? 32 : c;
});
buf[strLen] = 0;
auto err = nvs_set_str(handle, keys[index], buf);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
break;
2016-08-17 23:08:22 +08:00
}
default:
assert(0);
2016-08-17 23:08:22 +08:00
}
return ESP_OK;
};
for (; count != 0; --count) {
size_t index = gen() % nKeys;
switch (gen() % 3) {
case 0: // read, 1/3
if (randomRead(index) == ESP_ERR_FLASH_OP_FAIL) {
return ESP_ERR_FLASH_OP_FAIL;
}
break;
default: // write, 2/3
if (randomWrite(index) == ESP_ERR_FLASH_OP_FAIL) {
return ESP_ERR_FLASH_OP_FAIL;
}
break;
2016-08-17 23:08:22 +08:00
}
}
return ESP_OK;
}
};
2016-08-17 23:08:22 +08:00
TEST_CASE("monkey test", "[nvs][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
SpiFlashEmulator emu(10);
emu.randomize(seed);
emu.clearStats();
2016-08-17 23:08:22 +08:00
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
RandomTest test;
size_t count = 1000;
CHECK(test.doRandomThings(handle, gen, count) == ESP_OK);
s_perf << "Monkey test: nErase=" << emu.getEraseOps() << " nWrite=" << emu.getWriteOps() << std::endl;
}
2016-08-17 23:08:22 +08:00
TEST_CASE("test recovery from sudden poweroff", "[.][long][nvs][recovery][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
const size_t iter_count = 2000;
SpiFlashEmulator emu(10);
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
size_t totalOps = 0;
int lastPercent = -1;
for (uint32_t errDelay = 4; ; ++errDelay) {
INFO(errDelay);
emu.randomize(seed);
emu.clearStats();
emu.failAfter(errDelay);
RandomTest test;
if (totalOps != 0) {
int percent = errDelay * 100 / totalOps;
if (percent != lastPercent) {
printf("%d/%d (%d%%)\r\n", errDelay, static_cast<int>(totalOps), percent);
lastPercent = percent;
}
}
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
2016-08-17 23:08:22 +08:00
nvs_handle handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
size_t count = iter_count;
if(test.doRandomThings(handle, gen, count) != ESP_ERR_FLASH_OP_FAIL) {
nvs_close(handle);
break;
}
nvs_close(handle);
TEST_ESP_OK(nvs_flash_init(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
auto res = test.doRandomThings(handle, gen, count);
if (res != ESP_OK) {
nvs_dump();
CHECK(0);
}
nvs_close(handle);
totalOps = emu.getEraseOps() + emu.getWriteOps();
}
2016-08-17 23:08:22 +08:00
}
TEST_CASE("dump all performance data", "[nvs]")
{
std::cout << "====================" << std::endl << "Dumping benchmarks" << std::endl;
std::cout << s_perf.str() << std::endl;
std::cout << "====================" << std::endl;
}