esp-idf/components/wear_levelling/test/test_wl.c

306 lines
11 KiB
C
Raw Normal View History

#include <string.h>
#include "unity.h"
#include "wear_levelling.h"
#include "test_utils.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portable.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_clk.h"
#include "soc/cpu.h"
TEST_CASE("wl_unmount doesn't leak memory", "[wear_levelling]")
{
const esp_partition_t *partition = get_test_data_partition();
wl_handle_t handle;
// dummy unmount is needed to initialize static lock in WL
wl_unmount(WL_INVALID_HANDLE);
size_t size_before = xPortGetFreeHeapSize();
TEST_ESP_OK(wl_mount(partition, &handle));
wl_unmount(handle);
size_t size_after = xPortGetFreeHeapSize();
// Original code:
//TEST_ASSERT_EQUAL_HEX32(size_before, size_after);
// Workaround for problem with heap size calculation:
ptrdiff_t stack_diff = size_before - size_after;
stack_diff = abs(stack_diff);
if (stack_diff > 8) TEST_ASSERT_EQUAL(0, stack_diff);
}
TEST_CASE("wl_mount check partition parameters", "[wear_levelling][ignore]")
{
const esp_partition_t *test_partition = get_test_data_partition();
esp_partition_t fake_partition;
memcpy(&fake_partition, test_partition, sizeof(fake_partition));
wl_handle_t handle;
size_t size_before, size_after;
wl_unmount(WL_INVALID_HANDLE);
esp_partition_erase_range(test_partition, 0, test_partition->size);
// test small partition: result should be error
for (int i=0 ; i< 5 ; i++)
{
fake_partition.size = SPI_FLASH_SEC_SIZE*(i);
size_before = xPortGetFreeHeapSize();
TEST_ESP_ERR(ESP_ERR_INVALID_ARG, wl_mount(&fake_partition, &handle));
size_after = xPortGetFreeHeapSize();
// Original code:
//TEST_ASSERT_EQUAL_HEX32(size_before, size_after);
// Workaround for problem with heap size calculation:
ptrdiff_t stack_diff = size_before - size_after;
stack_diff = abs(stack_diff);
if (stack_diff > 8) TEST_ASSERT_EQUAL(0, stack_diff);
}
// test minimum size partition: result should be OK
fake_partition.size = SPI_FLASH_SEC_SIZE * 5;
size_before = xPortGetFreeHeapSize();
TEST_ESP_OK(wl_mount(&fake_partition, &handle));
wl_unmount(handle);
printf("Test done\n");
size_after = xPortGetFreeHeapSize();
// Original code:
//TEST_ASSERT_EQUAL_HEX32(size_before, size_after);
// Workaround for problem with heap size calculation:
ptrdiff_t stack_diff = size_before - size_after;
stack_diff = abs(stack_diff);
if (stack_diff > 8) TEST_ASSERT_EQUAL(0, stack_diff);
}
typedef struct {
size_t offset;
bool write;
size_t word_count;
int seed;
SemaphoreHandle_t done;
int result;
wl_handle_t handle;
} read_write_test_arg_t;
#define READ_WRITE_TEST_ARG_INIT(offset_, seed_, handle_, count_) \
{ \
.offset = offset_, \
.seed = seed_, \
.word_count = count_, \
.write = true, \
.done = xSemaphoreCreateBinary(), \
.handle = handle_ \
}
static void read_write_task(void* param)
{
read_write_test_arg_t* args = (read_write_test_arg_t*) param;
esp_err_t err;
srand(args->seed);
for (size_t i = 0; i < args->word_count; ++i) {
uint32_t val = rand();
if (args->write) {
err = wl_write(args->handle, args->offset + i * sizeof(val), &val, sizeof(val));
if (err != ESP_OK) {
args->result = err;
goto done;
}
} else {
uint32_t rval;
err = wl_read(args->handle, args->offset + i * sizeof(rval), &rval, sizeof(rval));
if (err != ESP_OK || rval != val) {
ets_printf("E: i=%d, cnt=%d rval=%d val=%d\n\n", i, args->word_count, rval, val);
args->result = ESP_FAIL;
goto done;
}
}
}
args->result = ESP_OK;
done:
xSemaphoreGive(args->done);
vTaskDelay(1);
vTaskDelete(NULL);
}
TEST_CASE("multiple tasks can access wl handle simultaneously", "[wear_levelling]")
{
const esp_partition_t *partition = get_test_data_partition();
wl_handle_t handle;
TEST_ESP_OK(wl_mount(partition, &handle));
size_t sector_size = wl_sector_size(handle);
TEST_ESP_OK(wl_erase_range(handle, 0, sector_size * 8));
read_write_test_arg_t args1 = READ_WRITE_TEST_ARG_INIT(0, 1, handle, sector_size/sizeof(uint32_t));
read_write_test_arg_t args2 = READ_WRITE_TEST_ARG_INIT(sector_size, 2, handle, sector_size/sizeof(uint32_t));
const size_t stack_size = 4096;
printf("writing 1 and 2\n");
const int cpuid_0 = 0;
const int cpuid_1 = portNUM_PROCESSORS - 1;
xTaskCreatePinnedToCore(&read_write_task, "rw1", stack_size, &args1, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_write_task, "rw2", stack_size, &args2, 3, NULL, cpuid_1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("f1 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("f2 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
args1.write = false;
args2.write = false;
read_write_test_arg_t args3 = READ_WRITE_TEST_ARG_INIT(2 * sector_size, 3, handle, sector_size/sizeof(uint32_t));
read_write_test_arg_t args4 = READ_WRITE_TEST_ARG_INIT(3 * sector_size, 4, handle, sector_size/sizeof(uint32_t));
printf("reading 1 and 2, writing 3 and 4\n");
xTaskCreatePinnedToCore(&read_write_task, "rw3", stack_size, &args3, 3, NULL, cpuid_1);
xTaskCreatePinnedToCore(&read_write_task, "rw4", stack_size, &args4, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_write_task, "rw1", stack_size, &args1, 3, NULL, cpuid_0);
xTaskCreatePinnedToCore(&read_write_task, "rw2", stack_size, &args2, 3, NULL, cpuid_1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("f1 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("f2 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
xSemaphoreTake(args3.done, portMAX_DELAY);
printf("f3 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args3.result);
xSemaphoreTake(args4.done, portMAX_DELAY);
printf("f4 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args4.result);
vSemaphoreDelete(args1.done);
vSemaphoreDelete(args2.done);
vSemaphoreDelete(args3.done);
vSemaphoreDelete(args4.done);
wl_unmount(handle);
}
#define TEST_SECTORS_COUNT 8
static void check_mem_data(wl_handle_t handle, uint32_t init_val, uint32_t* buff)
{
size_t sector_size = wl_sector_size(handle);
for (int m=0 ; m < TEST_SECTORS_COUNT ; m++) {
TEST_ESP_OK(wl_read(handle, sector_size * m, buff, sector_size));
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
uint32_t compare_val = init_val + i + m*sector_size;
TEST_ASSERT_EQUAL( buff[i], compare_val);
}
}
}
// We write complete memory with defined data
// And then write one sector many times.
// A data in other secors should be the same.
// We do this also with unmount
TEST_CASE("multiple write is correct", "[wear_levelling]")
{
const esp_partition_t *partition = get_test_data_partition();
esp_partition_t fake_partition;
memcpy(&fake_partition, partition, sizeof(fake_partition));
fake_partition.size = SPI_FLASH_SEC_SIZE*(4 + TEST_SECTORS_COUNT);
wl_handle_t handle;
TEST_ESP_OK(wl_mount(&fake_partition, &handle));
size_t sector_size = wl_sector_size(handle);
// Erase 8 sectors
TEST_ESP_OK(wl_erase_range(handle, 0, sector_size * TEST_SECTORS_COUNT));
// Write data to all sectors
printf("Check 1 sector_size=0x%08x\n", sector_size);
// Set initial random value
uint32_t init_val = rand();
uint32_t* buff = (uint32_t*)malloc(sector_size);
for (int m=0 ; m < TEST_SECTORS_COUNT ; m++) {
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
buff[i] = init_val + i + m*sector_size;
}
TEST_ESP_OK(wl_erase_range(handle, sector_size*m, sector_size));
TEST_ESP_OK(wl_write(handle, sector_size*m, buff, sector_size));
}
check_mem_data(handle, init_val, buff);
uint32_t start;
RSR(CCOUNT, start);
for (int m=0 ; m< 100000 ; m++) {
uint32_t sector = m % TEST_SECTORS_COUNT;
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
buff[i] = init_val + i + sector*sector_size;
}
TEST_ESP_OK(wl_erase_range(handle, sector_size*sector, sector_size));
TEST_ESP_OK(wl_write(handle, sector_size*sector, buff, sector_size));
check_mem_data(handle, init_val, buff);
uint32_t end;
RSR(CCOUNT, end);
uint32_t ms = (end - start) / (esp_clk_cpu_freq() / 1000);
printf("loop %4i pass, time= %ims\n", m, ms);
if (ms > 10000) {
break;
}
}
free(buff);
wl_unmount(handle);
}
extern const uint8_t test_partition_v1_bin_start[] asm("_binary_test_partition_v1_bin_start");
extern const uint8_t test_partition_v1_bin_end[] asm("_binary_test_partition_v1_bin_end");
#define COMPARE_START_CONST 0x12340000
// We write to partition prepared image with V1
// Then we convert image to new version and verifying the data
TEST_CASE("Version update test", "[wear_levelling]")
{
const esp_partition_t *partition = get_test_data_partition();
esp_partition_t fake_partition;
memcpy(&fake_partition, partition, sizeof(fake_partition));
if (partition->encrypted)
{
printf("Update from V1 to V2 will not work.\n");
return;
}
fake_partition.size = (size_t)(test_partition_v1_bin_end - test_partition_v1_bin_start);
printf("Data file size = %i, partition address = 0x%08x, file addr=0x%08x\n", (uint32_t)fake_partition.size, (uint32_t)fake_partition.address, (uint32_t)test_partition_v1_bin_start);
esp_partition_erase_range(&fake_partition, 0, fake_partition.size);
esp_partition_write(&fake_partition, 0, test_partition_v1_bin_start, fake_partition.size);
wl_handle_t handle;
TEST_ESP_OK(wl_mount(&fake_partition, &handle));
size_t sector_size = wl_sector_size(handle);
uint32_t* buff = (uint32_t*)malloc(sector_size);
uint32_t init_val = COMPARE_START_CONST;
int test_count = fake_partition.size/sector_size - 4;
for (int m=0 ; m < test_count; m++) {
TEST_ESP_OK(wl_read(handle, sector_size * m, buff, sector_size));
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
uint32_t compare_val = init_val + i + m*sector_size;
if (buff[i] != compare_val)
{
printf("error compare: 0x%08x != 0x%08x \n", buff[i], compare_val);
}
TEST_ASSERT_EQUAL( buff[i], compare_val);
}
}
free(buff);
wl_unmount(handle);
}