esp-idf/components/heap/test_multi_heap_host/test_multi_heap.cpp

618 lines
22 KiB
C++
Raw Normal View History

#include "catch.hpp"
#include "multi_heap.h"
#include "../multi_heap_config.h"
#include "../heap_tlsf.h"
#include "../heap_tlsf_block_functions.h"
#include <string.h>
#include <assert.h>
/* The functions __malloc__ and __free__ are used to call the libc
* malloc and free and allocate memory from the host heap. Since the test
* `TEST_CASE("multi_heap many random allocations", "[multi_heap]")`
* calls multi_heap_allocation_impl() with sizes that can go up to 8MB,
* an allocatation on the heap will be prefered rather than the stack which
* might not have the necessary memory.
*/
2021-11-05 20:50:56 -04:00
static void *__malloc__(size_t bytes)
{
return malloc(bytes);
}
static void __free__(void *ptr)
{
free(ptr);
}
/* Insurance against accidentally using libc heap functions in tests */
#undef free
#define free #error
#undef malloc
#define malloc #error
#undef calloc
#define calloc #error
#undef realloc
#define realloc #error
TEST_CASE("multi_heap simple allocations", "[multi_heap]")
{
uint8_t small_heap[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
size_t test_alloc_size = (multi_heap_free_size(heap) + 4) / 2;
printf("New heap:\n");
multi_heap_dump(heap);
printf("*********************\n");
uint8_t *buf = (uint8_t *)multi_heap_malloc(heap, test_alloc_size);
printf("small_heap %p buf %p\n", small_heap, buf);
REQUIRE( buf != NULL );
REQUIRE((intptr_t)buf >= (intptr_t)small_heap);
REQUIRE( (intptr_t)buf < (intptr_t)(small_heap + sizeof(small_heap)));
REQUIRE( multi_heap_get_allocated_size(heap, buf) >= test_alloc_size );
REQUIRE( multi_heap_get_allocated_size(heap, buf) < test_alloc_size + 16);
memset(buf, 0xEE, test_alloc_size);
REQUIRE( multi_heap_malloc(heap, test_alloc_size) == NULL );
multi_heap_free(heap, buf);
printf("Empty?\n");
multi_heap_dump(heap);
printf("*********************\n");
/* Now there should be space for another allocation */
buf = (uint8_t *)multi_heap_malloc(heap, test_alloc_size);
REQUIRE( buf != NULL );
multi_heap_free(heap, buf);
REQUIRE( multi_heap_free_size(heap) > multi_heap_minimum_free_size(heap) );
}
TEST_CASE("multi_heap fragmentation", "[multi_heap]")
{
const size_t HEAP_SIZE = 4 * 1024;
uint8_t small_heap[HEAP_SIZE];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
const size_t alloc_size = 500;
void *p[4];
for (int i = 0; i < 4; i++) {
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
p[i] = multi_heap_malloc(heap, alloc_size);
printf("%d = %p ****->\n", i, p[i]);
multi_heap_dump(heap);
REQUIRE( p[i] != NULL );
}
printf("allocated %p %p %p %p\n", p[0], p[1], p[2], p[3]);
REQUIRE( multi_heap_malloc(heap, alloc_size * 5) == NULL ); /* no room to allocate 5*alloc_size now */
printf("4 allocations:\n");
multi_heap_dump(heap);
printf("****************\n");
multi_heap_free(heap, p[0]);
multi_heap_free(heap, p[1]);
multi_heap_free(heap, p[3]);
printf("1 allocations:\n");
multi_heap_dump(heap);
printf("****************\n");
void *big = multi_heap_malloc(heap, alloc_size * 3);
//Blocks in TLSF are organized in different form, so this makes no sense
multi_heap_free(heap, big);
multi_heap_free(heap, p[2]);
printf("0 allocations:\n");
multi_heap_dump(heap);
printf("****************\n");
big = multi_heap_malloc(heap, alloc_size * 2);
//Blocks in TLSF are organized in different form, so this makes no sense
multi_heap_free(heap, big);
}
/* Test that malloc/free does not leave free space fragmented */
TEST_CASE("multi_heap defrag", "[multi_heap]")
{
void *p[4];
uint8_t small_heap[4 * 1024];
multi_heap_info_t info, info2;
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
printf("0 ---\n");
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info);
REQUIRE( 0 == info.allocated_blocks );
REQUIRE( 1 == info.free_blocks );
printf("1 ---\n");
p[0] = multi_heap_malloc(heap, 128);
p[1] = multi_heap_malloc(heap, 32);
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
printf("2 ---\n");
multi_heap_free(heap, p[0]);
p[2] = multi_heap_malloc(heap, 64);
multi_heap_dump(heap);
REQUIRE( p[2] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
printf("3 ---\n");
multi_heap_free(heap, p[2]);
p[3] = multi_heap_malloc(heap, 32);
multi_heap_dump(heap);
REQUIRE( p[3] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info2);
REQUIRE( 2 == info2.allocated_blocks );
REQUIRE( 2 == info2.free_blocks );
multi_heap_free(heap, p[0]);
multi_heap_free(heap, p[1]);
multi_heap_get_info(heap, &info2);
REQUIRE( 0 == info2.allocated_blocks );
REQUIRE( 1 == info2.free_blocks );
REQUIRE( info.total_free_bytes == info2.total_free_bytes );
}
/* Test that malloc/free does not leave free space fragmented
Note: With fancy poisoning, realloc is implemented as malloc-copy-free and this test does not apply.
*/
#ifndef MULTI_HEAP_POISONING_SLOW
TEST_CASE("multi_heap defrag realloc", "[multi_heap]")
{
void *p[4];
uint8_t small_heap[4 * 1024];
multi_heap_info_t info, info2;
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
printf("0 ---\n");
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info);
REQUIRE( 0 == info.allocated_blocks );
REQUIRE( 1 == info.free_blocks );
printf("1 ---\n");
p[0] = multi_heap_malloc(heap, 128);
p[1] = multi_heap_malloc(heap, 32);
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
printf("2 ---\n");
p[2] = multi_heap_realloc(heap, p[0], 64);
multi_heap_dump(heap);
REQUIRE( p[2] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
printf("3 ---\n");
p[3] = multi_heap_realloc(heap, p[2], 32);
multi_heap_dump(heap);
REQUIRE( p[3] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info2);
REQUIRE( 2 == info2.allocated_blocks );
REQUIRE( 2 == info2.free_blocks );
multi_heap_free(heap, p[0]);
multi_heap_free(heap, p[1]);
multi_heap_get_info(heap, &info2);
REQUIRE( 0 == info2.allocated_blocks );
REQUIRE( 1 == info2.free_blocks );
REQUIRE( info.total_free_bytes == info2.total_free_bytes );
}
#endif
2021-11-05 20:50:56 -04:00
void multi_heap_allocation_impl(int heap_size)
{
uint8_t *big_heap = (uint8_t *) __malloc__(heap_size);
const int NUM_POINTERS = 64;
2021-11-05 20:50:56 -04:00
printf("Running multi-allocation test with heap_size %d...\n", heap_size);
REQUIRE( big_heap );
multi_heap_handle_t heap = multi_heap_register(big_heap, heap_size);
void *p[NUM_POINTERS] = { 0 };
size_t s[NUM_POINTERS] = { 0 };
const size_t initial_free = multi_heap_free_size(heap);
const int ITERATIONS = 5000;
for (int i = 0; i < ITERATIONS; i++) {
/* check all pointers allocated so far are valid inside big_heap */
for (int j = 0; j < NUM_POINTERS; j++) {
if (p[j] != NULL) {
}
}
uint8_t n = rand() % NUM_POINTERS;
if (i % 4 == 0) {
/* 1 in 4 iterations, try to realloc the buffer instead
of using malloc/free
*/
size_t new_size = (rand() % 1023) + 1;
void *new_p = multi_heap_realloc(heap, p[n], new_size);
printf("realloc %p -> %p (%zu -> %zu)\n", p[n], new_p, s[n], new_size);
multi_heap_check(heap, true);
if (new_size == 0 || new_p != NULL) {
p[n] = new_p;
s[n] = new_size;
if (new_size > 0) {
REQUIRE( p[n] >= big_heap );
2021-11-05 20:50:56 -04:00
REQUIRE( p[n] < big_heap + heap_size );
memset(p[n], n, new_size);
}
}
continue;
}
if (p[n] != NULL) {
if (s[n] > 0) {
/* Verify pre-existing contents of p[n] */
uint8_t compare[s[n]];
memset(compare, n, s[n]);
/*REQUIRE*/assert( memcmp(compare, p[n], s[n]) == 0 );
}
REQUIRE( multi_heap_check(heap, true) );
multi_heap_free(heap, p[n]);
printf("freed %p (%zu)\n", p[n], s[n]);
if (!multi_heap_check(heap, true)) {
printf("FAILED iteration %d after freeing %p\n", i, p[n]);
multi_heap_dump(heap);
REQUIRE(0);
}
}
s[n] = rand() % 1024;
REQUIRE( multi_heap_check(heap, true) );
p[n] = multi_heap_malloc(heap, s[n]);
printf("malloc %p (%zu)\n", p[n], s[n]);
if (p[n] != NULL) {
REQUIRE( p[n] >= big_heap );
2021-11-05 20:50:56 -04:00
REQUIRE( p[n] < big_heap + heap_size );
}
if (!multi_heap_check(heap, true)) {
printf("FAILED iteration %d after mallocing %p (%zu bytes)\n", i, p[n], s[n]);
multi_heap_dump(heap);
REQUIRE(0);
}
if (p[n] != NULL) {
memset(p[n], n, s[n]);
}
}
for (int i = 0; i < NUM_POINTERS; i++) {
multi_heap_free(heap, p[i]);
if (!multi_heap_check(heap, true)) {
printf("FAILED during cleanup after freeing %p\n", p[i]);
multi_heap_dump(heap);
REQUIRE(0);
}
}
REQUIRE( initial_free == multi_heap_free_size(heap) );
2021-11-05 20:50:56 -04:00
__free__(big_heap);
}
TEST_CASE("multi_heap many random allocations", "[multi_heap]")
{
size_t poolsize[] = { 15, 255, 4095, 8191 };
for (size_t i = 0; i < sizeof(poolsize)/sizeof(size_t); i++) {
multi_heap_allocation_impl(poolsize[i] * 1024);
}
}
TEST_CASE("multi_heap_get_info() function", "[multi_heap]")
{
uint8_t heapdata[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
multi_heap_info_t before, after, freed;
multi_heap_get_info(heap, &before);
printf("before: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
before.total_free_bytes,
before.total_allocated_bytes,
before.largest_free_block,
before.minimum_free_bytes,
before.allocated_blocks,
before.free_blocks,
before.total_blocks);
REQUIRE( 0 == before.allocated_blocks );
REQUIRE( 0 == before.total_allocated_bytes );
REQUIRE( before.total_free_bytes == before.minimum_free_bytes );
void *x = multi_heap_malloc(heap, 32);
multi_heap_get_info(heap, &after);
printf("after: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
after.total_free_bytes,
after.total_allocated_bytes,
after.largest_free_block,
after.minimum_free_bytes,
after.allocated_blocks,
after.free_blocks,
after.total_blocks);
REQUIRE( 1 == after.allocated_blocks );
REQUIRE( 32 == after.total_allocated_bytes );
REQUIRE( after.minimum_free_bytes < before.minimum_free_bytes);
REQUIRE( after.minimum_free_bytes > 0 );
multi_heap_free(heap, x);
multi_heap_get_info(heap, &freed);
printf("freed: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
freed.total_free_bytes,
freed.total_allocated_bytes,
freed.largest_free_block,
freed.minimum_free_bytes,
freed.allocated_blocks,
freed.free_blocks,
freed.total_blocks);
REQUIRE( 0 == freed.allocated_blocks );
REQUIRE( 0 == freed.total_allocated_bytes );
REQUIRE( before.total_free_bytes == freed.total_free_bytes );
REQUIRE( after.minimum_free_bytes == freed.minimum_free_bytes );
}
TEST_CASE("multi_heap minimum-size allocations", "[multi_heap]")
{
uint8_t heapdata[4096];
void *p[sizeof(heapdata) / sizeof(void *)] = {NULL};
const size_t NUM_P = sizeof(p) / sizeof(void *);
size_t allocated_size = 0;
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
size_t before_free = multi_heap_free_size(heap);
size_t i;
for (i = 0; i < NUM_P; i++) {
//TLSF minimum block size is 4 bytes
p[i] = multi_heap_malloc(heap, 1);
if (p[i] == NULL) {
break;
}
}
REQUIRE( i < NUM_P); // Should have run out of heap before we ran out of pointers
printf("Allocated %zu minimum size chunks\n", i);
REQUIRE(multi_heap_free_size(heap) < before_free);
multi_heap_check(heap, true);
/* Free in random order */
bool has_allocations = true;
while (has_allocations) {
i = rand() % NUM_P;
multi_heap_free(heap, p[i]);
p[i] = NULL;
multi_heap_check(heap, true);
has_allocations = false;
for (i = 0; i < NUM_P && !has_allocations; i++) {
has_allocations = (p[i] != NULL);
}
}
/* all freed! */
REQUIRE( before_free == multi_heap_free_size(heap) );
}
TEST_CASE("multi_heap_realloc()", "[multi_heap]")
{
const size_t HEAP_SIZE = 4 * 1024;
const uint32_t PATTERN = 0xABABDADA;
uint8_t small_heap[HEAP_SIZE];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
uint32_t *a = (uint32_t *)multi_heap_malloc(heap, 64);
uint32_t *b = (uint32_t *)multi_heap_malloc(heap, 32);
REQUIRE( a != NULL );
REQUIRE( b != NULL );
REQUIRE( b > a); /* 'b' takes the block after 'a' */
*a = PATTERN;
uint32_t *c = (uint32_t *)multi_heap_realloc(heap, a, 72);
REQUIRE( multi_heap_check(heap, true));
REQUIRE( c != NULL );
REQUIRE( c > b ); /* 'a' moves, 'c' takes the block after 'b' */
REQUIRE( *c == PATTERN );
#ifndef MULTI_HEAP_POISONING_SLOW
// "Slow" poisoning implementation doesn't reallocate in place, so these
// test will fail...
uint32_t *d = (uint32_t *)multi_heap_realloc(heap, c, 36);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( c == d ); /* 'c' block should be shrunk in-place */
REQUIRE( *d == PATTERN);
// biggest allocation possible to completely fill the block left free after it was reallocated
uint32_t *e = (uint32_t *)multi_heap_malloc(heap, 60);
REQUIRE( multi_heap_check(heap, true));
REQUIRE( a == e ); /* 'e' takes the block formerly occupied by 'a' */
multi_heap_free(heap, d);
uint32_t *f = (uint32_t *)multi_heap_realloc(heap, b, 64);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( f == b ); /* 'b' should be extended in-place, over space formerly occupied by 'd' */
#define TOO_MUCH HEAP_SIZE + 1
/* not enough contiguous space left in the heap */
uint32_t *g = (uint32_t *)multi_heap_realloc(heap, e, TOO_MUCH);
REQUIRE( g == NULL );
multi_heap_free(heap, f);
/* try again */
g = (uint32_t *)multi_heap_realloc(heap, e, 128);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( e == g ); /* 'g' extends 'e' in place, into the space formerly held by 'f' */
#endif // MULTI_HEAP_POISONING_SLOW
}
// TLSF only accepts heaps aligned to 4-byte boundary so
// only aligned allocation tests make sense.
TEST_CASE("multi_heap aligned allocations", "[multi_heap]")
{
uint8_t test_heap[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(test_heap, sizeof(test_heap));
uint32_t aligments = 0; // starts from alignment by 4-byte boundary
size_t old_size = multi_heap_free_size(heap);
size_t leakage = 1024;
printf("[ALIGNED_ALLOC] heap_size before: %d \n", old_size);
printf("New heap:\n");
multi_heap_dump(heap);
printf("*********************\n");
for(;aligments <= 256; aligments++) {
//Use some stupid size value to test correct alignment even in strange
//memory layout objects:
uint8_t *buf = (uint8_t *)multi_heap_aligned_alloc(heap, (aligments + 137), aligments );
if(((aligments & (aligments - 1)) != 0) || (!aligments)) {
REQUIRE( buf == NULL );
} else {
REQUIRE( buf != NULL );
REQUIRE((intptr_t)buf >= (intptr_t)test_heap);
REQUIRE((intptr_t)buf < (intptr_t)(test_heap + sizeof(test_heap)));
printf("[ALIGNED_ALLOC] alignment required: %u \n", aligments);
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
//Address of obtained block must be aligned with selected value
REQUIRE(((intptr_t)buf & (aligments - 1)) == 0);
//Write some data, if it corrupts memory probably the heap
//canary verification will fail:
memset(buf, 0xA5, (aligments + 137));
multi_heap_free(heap, buf);
}
}
/* Check that TLSF doesn't allocate a memory space smaller than required.
* In any case, TLSF will write data in the previous block than the one
* allocated. Thus, we should try to get/allocate this previous block. If
* the poisoned filled pattern has beeen overwritten by TLSF, then this
* previous block will trigger an exception.
* More info on this bug in !16296. */
const size_t size = 50; /* TLSF will round the size up */
uint8_t *buf1 = (uint8_t *)multi_heap_aligned_alloc(heap, size, 4);
uint8_t *buf2 = (uint8_t *)multi_heap_aligned_alloc(heap, size, 4);
multi_heap_free(heap, buf1);
/* By specifying a size equal of the gap between buf1 and buf2. We are
* trying to force TLSF to allocate two consecutive blocks. */
buf1 = (uint8_t *)multi_heap_aligned_alloc(heap, buf2 - buf1, 4);
multi_heap_free(heap, buf2);
printf("[ALIGNED_ALLOC] heap_size after: %d \n", multi_heap_free_size(heap));
REQUIRE((old_size - multi_heap_free_size(heap)) <= leakage);
}
// TLSF has some overhead when allocating blocks, check that overhead
TEST_CASE("multi_heap allocation overhead", "[multi_heap]")
{
uint8_t heapdata[4 * 1024];
size_t alloc_size = 256;
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
size_t free_bytes_1 = multi_heap_free_size(heap);
/* Allocate any amount of data, in any case there will be an overhead */
void *x = multi_heap_malloc(heap, alloc_size);
/* free_bytes_2 should be free_bytes_1 - alloc_size - overhead.
* We don't know the value of overhead, let's check that it is non-zero */
size_t free_bytes_2 = multi_heap_free_size(heap);
REQUIRE( free_bytes_1 > free_bytes_2 );
REQUIRE( free_bytes_1 - free_bytes_2 > alloc_size );
multi_heap_free(heap, x);
}
/* This test will corrupt the memory of a free block in the heap and check
* that in the case of comprehensive poisoning the heap corruption is detected
* by multi_heap_check(). For light poisoning and no poisoning, the test will
* check that multi_heap_check() does not report the corruption.
*/
TEST_CASE("multi_heap poisoning detection", "[multi_heap]")
{
const size_t HEAP_SIZE = 4 * 1024;
/* define heap related data */
uint8_t heap_mem[HEAP_SIZE];
memset(heap_mem, 0x00, HEAP_SIZE);
/* register the heap memory. One free block only will be available */
multi_heap_handle_t heap = multi_heap_register(heap_mem, HEAP_SIZE);
control_t *tlsf_ptr = (control_t*)(heap_mem + 20);
const size_t control_t_size = tlsf_ptr->size;
const size_t heap_t_size = 20;
/* offset in memory at which to find the first free memory byte */
const size_t free_memory_offset = heap_t_size + control_t_size + sizeof(block_header_t) - block_header_overhead;
/* block header of the free block under test in the heap () */
const block_header_t* block = (block_header_t*)(heap_mem + free_memory_offset - sizeof(block_header_t));
/* actual number of bytes potentially filled with the free pattern in the free block under test */
const size_t effective_free_size = block_size(block) - block_header_overhead - offsetof(block_header_t, next_free);
/* variable used in the test */
size_t affected_byte = 0x00;
uint8_t original_value = 0x00;
uint8_t corrupted_value = 0x00;
/* repeat the corruption a few times to cover more of the free memory */
for (size_t i = 0; i < effective_free_size; i++)
{
/* corrupt random bytes in the heap (it needs to be bytes from free memory in
* order to check that the comprehensive poisoning is doing its job) */
affected_byte = free_memory_offset + i;
corrupted_value = (rand() % UINT8_MAX) | 1;
/* keep the good value in store in order to check that when we set the byte back
* to its original value, multi_heap_check() no longer returns the heap corruption. */
original_value = heap_mem[affected_byte];
/* make sure we are not replacing the original value with the same value */
heap_mem[affected_byte] ^= corrupted_value;
bool is_heap_ok = multi_heap_check(heap, true);
#ifdef CONFIG_HEAP_POISONING_COMPREHENSIVE
/* check that multi_heap_check() detects the corruption */
REQUIRE(is_heap_ok == false);
#else
/* the comprehensive corruption is not checked in the multi_heap_check() */
REQUIRE(is_heap_ok == true);
#endif
/* fix the corruption */
heap_mem[affected_byte] = original_value;
/* check that multi_heap_check() stops reporting the corruption */
is_heap_ok = multi_heap_check(heap, true);
REQUIRE(is_heap_ok == true);
}
}