esp-idf/components/driver/test/test_uart.c

532 lines
19 KiB
C
Raw Normal View History

#include <string.h>
2018-07-17 07:10:33 -04:00
#include <sys/param.h>
#include "unity.h"
#include "test_utils.h" // unity_send_signal
#include "driver/uart.h" // for the uart driver access
#include "esp_log.h"
#include "esp_system.h" // for uint32_t esp_random()
2020-11-19 04:03:10 -05:00
#include "esp_rom_gpio.h"
#include "soc/uart_periph.h"
#include "hal/uart_ll.h"
#include "hal/uart_hal.h"
#define UART_TAG "Uart"
#define UART_NUM1 (UART_NUM_1)
#define BUF_SIZE (100)
#define UART1_RX_PIN (22)
#define UART1_TX_PIN (23)
#define UART_BAUD_11520 (11520)
#define UART_BAUD_115200 (115200)
#define TOLERANCE (0.02) //baud rate error tolerance 2%.
2020-11-19 04:03:10 -05:00
#define UART1_CTS_PIN (13)
// RTS for RS485 Half-Duplex Mode manages DE/~RE
#define UART1_RTS_PIN (18)
// Number of packets to be send during test
#define PACKETS_NUMBER (10)
// Wait timeout for uart driver
#define PACKET_READ_TICS (1000 / portTICK_RATE_MS)
2020-11-19 04:03:10 -05:00
#define TEST_DEFAULT_CLK UART_SCLK_APB
static void uart_config(uint32_t baud_rate, uart_sclk_t source_clk)
{
uart_config_t uart_config = {
.baud_rate = baud_rate,
2020-11-19 04:03:10 -05:00
.source_clk = source_clk,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
};
2020-11-19 04:03:10 -05:00
2019-04-17 08:19:44 -04:00
uart_driver_install(UART_NUM1, BUF_SIZE * 2, BUF_SIZE * 2, 20, NULL, 0);
uart_param_config(UART_NUM1, &uart_config);
TEST_ESP_OK(uart_set_loop_back(UART_NUM1, true));
}
static volatile bool exit_flag;
static void test_task(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
char* data = (char *) malloc(256);
while (exit_flag == false) {
uart_tx_chars(UART_NUM1, data, 256);
// The uart_wait_tx_done() function does not block anything if ticks_to_wait = 0.
uart_wait_tx_done(UART_NUM1, 0);
}
free(data);
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
static void test_task2(void *pvParameters)
{
while (exit_flag == false) {
// This task obstruct a setting tx_done_sem semaphore in the UART interrupt.
// It leads to waiting the ticks_to_wait time in uart_wait_tx_done() function.
2019-04-17 08:19:44 -04:00
uart_disable_tx_intr(UART_NUM1);
}
vTaskDelete(NULL);
}
TEST_CASE("test uart_wait_tx_done is not blocked when ticks_to_wait=0", "[uart]")
{
2020-11-19 04:03:10 -05:00
uart_config(UART_BAUD_11520, TEST_DEFAULT_CLK);
xSemaphoreHandle exit_sema = xSemaphoreCreateBinary();
exit_flag = false;
xTaskCreate(test_task, "tsk1", 2048, &exit_sema, 5, NULL);
xTaskCreate(test_task2, "tsk2", 2048, NULL, 5, NULL);
printf("Waiting for 5 sec\n");
vTaskDelay(5000 / portTICK_PERIOD_MS);
exit_flag = true;
if (xSemaphoreTake(exit_sema, 1000 / portTICK_PERIOD_MS) == pdTRUE) {
vSemaphoreDelete(exit_sema);
} else {
TEST_FAIL_MESSAGE("uart_wait_tx_done is blocked");
}
TEST_ESP_OK(uart_driver_delete(UART_NUM1));
}
TEST_CASE("test uart get baud-rate", "[uart]")
{
2020-11-19 04:03:10 -05:00
#if SOC_UART_SUPPORT_REF_TICK
uint32_t baud_rate1 = 0;
printf("init uart%d, use reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_11520);
2020-11-19 04:03:10 -05:00
uart_config(UART_BAUD_11520, UART_SCLK_REF_TICK);
uart_get_baudrate(UART_NUM1, &baud_rate1);
2020-11-19 04:03:10 -05:00
printf("get baud rate when use reftick: %d\n", (int)baud_rate1);
TEST_ASSERT_UINT32_WITHIN(UART_BAUD_11520 * TOLERANCE, UART_BAUD_11520, baud_rate1);
#endif
uint32_t baud_rate2 = 0;
printf("init uart%d, unuse reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_115200);
2020-11-19 04:03:10 -05:00
uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
uart_get_baudrate(UART_NUM1, &baud_rate2);
printf("get baud rate when don't use reftick: %d\n", (int)baud_rate2);
TEST_ASSERT_UINT32_WITHIN(UART_BAUD_115200 * TOLERANCE, UART_BAUD_115200, baud_rate2);
2020-11-19 04:03:10 -05:00
uart_driver_delete(UART_NUM1);
ESP_LOGI(UART_TAG, "get baud-rate test passed ....\n");
}
TEST_CASE("test uart tx data with break", "[uart]")
{
const int buf_len = 200;
const int send_len = 128;
const int brk_len = 10;
char *psend = (char *)malloc(buf_len);
TEST_ASSERT_NOT_NULL(psend);
memset(psend, '0', buf_len);
2020-11-19 04:03:10 -05:00
uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
printf("Uart%d send %d bytes with break\n", UART_NUM1, send_len);
uart_write_bytes_with_break(UART_NUM1, (const char *)psend, send_len, brk_len);
uart_wait_tx_done(UART_NUM1, (portTickType)portMAX_DELAY);
//If the code is running here, it means the test passed, otherwise it will crash due to the interrupt wdt timeout.
printf("Send data with break test passed\n");
free(psend);
uart_driver_delete(UART_NUM1);
}
static void uart_word_len_set_get_test(int uart_num)
{
printf("uart word len set and get test\n");
uart_word_length_t word_length_set = 0;
uart_word_length_t word_length_get = 0;
for (int i = 0; i < UART_DATA_BITS_MAX; i++) {
word_length_set = UART_DATA_5_BITS + i;
TEST_ESP_OK(uart_set_word_length(uart_num, word_length_set));
TEST_ESP_OK(uart_get_word_length(uart_num, &word_length_get));
TEST_ASSERT_EQUAL(word_length_set, word_length_get);
}
}
static void uart_stop_bit_set_get_test(int uart_num)
{
printf("uart stop bit set and get test\n");
uart_stop_bits_t stop_bit_set = 0;
uart_stop_bits_t stop_bit_get = 0;
for (int i = UART_STOP_BITS_1; i < UART_STOP_BITS_MAX; i++) {
stop_bit_set = i;
TEST_ESP_OK(uart_set_stop_bits(uart_num, stop_bit_set));
TEST_ESP_OK(uart_get_stop_bits(uart_num, &stop_bit_get));
TEST_ASSERT_EQUAL(stop_bit_set, stop_bit_get);
}
}
static void uart_parity_set_get_test(int uart_num)
{
printf("uart parity set and get test\n");
uart_parity_t parity_set[3] = {
UART_PARITY_DISABLE,
UART_PARITY_EVEN,
UART_PARITY_ODD,
};
uart_parity_t parity_get = 0;
for (int i = 0; i < 3; i++) {
TEST_ESP_OK(uart_set_parity(uart_num, parity_set[i]));
TEST_ESP_OK(uart_get_parity(uart_num, &parity_get));
TEST_ASSERT_EQUAL(parity_set[i], parity_get);
}
}
static void uart_hw_flow_set_get_test(int uart_num)
{
printf("uart hw flow control set and get test\n");
uart_hw_flowcontrol_t flowcontrol_set = 0;
uart_hw_flowcontrol_t flowcontrol_get = 0;
for (int i = 0; i < UART_HW_FLOWCTRL_DISABLE; i++) {
TEST_ESP_OK(uart_set_hw_flow_ctrl(uart_num, flowcontrol_set, 20));
TEST_ESP_OK(uart_get_hw_flow_ctrl(uart_num, &flowcontrol_get));
TEST_ASSERT_EQUAL(flowcontrol_set, flowcontrol_get);
}
}
static void uart_wakeup_set_get_test(int uart_num)
{
printf("uart wake up set and get test\n");
int wake_up_set = 0;
int wake_up_get = 0;
for (int i = 3; i < 0x3ff; i++) {
wake_up_set = i;
TEST_ESP_OK(uart_set_wakeup_threshold(uart_num, wake_up_set));
TEST_ESP_OK(uart_get_wakeup_threshold(uart_num, &wake_up_get));
TEST_ASSERT_EQUAL(wake_up_set, wake_up_get);
}
}
TEST_CASE("uart general API test", "[uart]")
{
const int uart_num = UART_NUM1;
uart_config_t uart_config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
2020-11-19 04:03:10 -05:00
.source_clk = TEST_DEFAULT_CLK,
};
uart_param_config(uart_num, &uart_config);
uart_word_len_set_get_test(uart_num);
uart_stop_bit_set_get_test(uart_num);
uart_parity_set_get_test(uart_num);
uart_hw_flow_set_get_test(uart_num);
uart_wakeup_set_get_test(uart_num);
}
static void uart_write_task(void *param)
{
int uart_num = (int)param;
uint8_t *tx_buf = (uint8_t *)malloc(1024);
if(tx_buf == NULL) {
TEST_FAIL_MESSAGE("tx buffer malloc fail");
}
for(int i = 1; i < 1023; i++) {
tx_buf[i] = (i & 0xff);
}
for(int i = 0; i < 1024; i++) {
//d[0] and d[1023] are header
tx_buf[0] = (i & 0xff);
tx_buf[1023] = ((~i) & 0xff);
uart_write_bytes(uart_num, (const char*)tx_buf, 1024);
uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
}
free(tx_buf);
vTaskDelete(NULL);
}
2020-11-19 04:03:10 -05:00
/**
* The following tests use loop back
*
* NOTE: In the following tests, because the internal loopback is enabled, the CTS signal is connected to
* the RTS signal internally. However, On ESP32S3, they are not, and the CTS keeps the default level (which
* is a high level). So the workaround is to map the CTS in_signal to a GPIO pin (here IO13 is used) and connect
* the RTS output_signal to this IO.
*/
TEST_CASE("uart read write test", "[uart]")
{
const int uart_num = UART_NUM1;
uint8_t *rd_data = (uint8_t *)malloc(1024);
if(rd_data == NULL) {
TEST_FAIL_MESSAGE("rx buffer malloc fail");
}
uart_config_t uart_config = {
.baud_rate = 2000000,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
2020-11-19 04:03:10 -05:00
.source_clk = TEST_DEFAULT_CLK,
.rx_flow_ctrl_thresh = 120
};
TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, 0, 20, NULL, 0));
TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
TEST_ESP_OK(uart_set_loop_back(uart_num, true));
2020-11-19 04:03:10 -05:00
TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
//Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0);
TEST_ESP_OK(uart_wait_tx_done(uart_num, portMAX_DELAY));
vTaskDelay(1 / portTICK_PERIOD_MS); // make sure last byte has flushed from TX FIFO
TEST_ESP_OK(uart_flush_input(uart_num));
xTaskCreate(uart_write_task, "uart_write_task", 2048 * 4, (void *)uart_num, UNITY_FREERTOS_PRIORITY - 1, NULL);
for (int i = 0; i < 1024; i++) {
int bytes_remaining = 1024;
memset(rd_data, 0, 1024);
while (bytes_remaining) {
int bytes_received = uart_read_bytes(uart_num, rd_data + 1024 - bytes_remaining, bytes_remaining, (TickType_t)1000);
if (bytes_received < 0) {
TEST_FAIL_MESSAGE("read timeout, uart read write test fail");
}
bytes_remaining -= bytes_received;
}
int check_fail_cnt = 0;
if (rd_data[0] != (i & 0xff)) {
printf("packet %d index check error at offset 0, expected 0x%02x\n", i, i);
++check_fail_cnt;
}
if (rd_data[1023] != ((~i) & 0xff)) {
printf("packet %d index check error at offset 1023, expected 0x%02x\n", i, ((~i) & 0xff));
++check_fail_cnt;
}
for (int j = 1; j < 1023; j++) {
if (rd_data[j] != (j & 0xff)) {
printf("data mismatch in packet %d offset %d, expected 0x%02x got 0x%02x\n", i, j, (j & 0xff), rd_data[j]);
++check_fail_cnt;
}
if (check_fail_cnt > 10) {
printf("(further checks skipped)\n");
break;
}
}
if (check_fail_cnt > 0) {
ESP_LOG_BUFFER_HEX("rd_data", rd_data, 1024);
TEST_FAIL();
}
}
uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
uart_driver_delete(uart_num);
free(rd_data);
}
TEST_CASE("uart tx with ringbuffer test", "[uart]")
{
const int uart_num = UART_NUM1;
uint8_t *rd_data = (uint8_t *)malloc(1024);
uint8_t *wr_data = (uint8_t *)malloc(1024);
if(rd_data == NULL || wr_data == NULL) {
TEST_FAIL_MESSAGE("buffer malloc fail");
}
uart_config_t uart_config = {
.baud_rate = 2000000,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
.rx_flow_ctrl_thresh = 120,
2020-11-19 04:03:10 -05:00
.source_clk = TEST_DEFAULT_CLK,
};
uart_wait_tx_idle_polling(uart_num);
TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
TEST_ESP_OK(uart_driver_install(uart_num, 1024 * 2, 1024 *2, 20, NULL, 0));
TEST_ESP_OK(uart_set_loop_back(uart_num, true));
2020-11-19 04:03:10 -05:00
TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
//Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0);
for (int i = 0; i < 1024; i++) {
wr_data[i] = i;
rd_data[i] = 0;
}
uart_write_bytes(uart_num, (const char*)wr_data, 1024);
uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
uart_read_bytes(uart_num, rd_data, 1024, (TickType_t)1000);
TEST_ASSERT_EQUAL_HEX8_ARRAY(wr_data, rd_data, 1024);
TEST_ESP_OK(uart_driver_delete(uart_num));
free(rd_data);
free(wr_data);
}
TEST_CASE("uart int state restored after flush", "[uart]")
{
/**
* The first goal of this test is to make sure that when our RX FIFO is full,
* we can continue receiving back data after flushing
* For more details, check IDF-4374
*/
uart_config_t uart_config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_APB,
};
const uart_port_t uart_echo = UART_NUM_1;
const int uart_tx_signal = U1TXD_OUT_IDX;
const int uart_tx = 4;
const int uart_rx = 5;
const int buf_size = 256;
const int intr_alloc_flags = 0;
TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
/* Make sure UART1's RX signal is connected to TX pin
* This creates a loop that lets us receive anything we send on the UART */
esp_rom_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false);
uint8_t *data = (uint8_t *) malloc(buf_size);
TEST_ASSERT_NOT_NULL(data);
uart_write_bytes(uart_echo, (const char *) data, buf_size);
/* As we set up a loopback, we can read them back on RX */
int len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
TEST_ASSERT_EQUAL(len, buf_size);
/* Fill the RX buffer, this should disable the RX interrupts */
int written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
TEST_ASSERT_NOT_EQUAL(-1, written);
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
TEST_ASSERT_NOT_EQUAL(-1, written);
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
TEST_ASSERT_NOT_EQUAL(-1, written);
/* Flush the input buffer, RX interrupts should be re-enabled */
uart_flush_input(uart_echo);
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
TEST_ASSERT_NOT_EQUAL(-1, written);
len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
/* len equals buf_size bytes if interrupts were indeed re-enabled */
TEST_ASSERT_EQUAL(len, buf_size);
/**
* Second test, make sure that if we explicitly disable the RX interrupts,
* they are NOT re-enabled after flushing
* To do so, start by cleaning the RX FIFO, disable the RX interrupts,
* flush again, send data to the UART and check that we haven't received
* any of the bytes */
uart_flush_input(uart_echo);
uart_disable_rx_intr(uart_echo);
uart_flush_input(uart_echo);
written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
TEST_ASSERT_NOT_EQUAL(-1, written);
len = uart_read_bytes(uart_echo, data, buf_size, 250 / portTICK_RATE_MS);
TEST_ASSERT_EQUAL(len, 0);
TEST_ESP_OK(uart_driver_delete(uart_echo));
free(data);
}
/* Global variable shared between the ISR and the test function */
volatile uint32_t uart_isr_happened = 0;
static void uart_custom_isr(void* arg) {
(void) arg;
/* Clear interrupt status and disable TX interrupt here in order to
* prevent an infinite call loop. Use the LL function to prevent
* entering a critical section from an interrupt. */
uart_ll_disable_intr_mask(UART_LL_GET_HW(1), UART_INTR_TXFIFO_EMPTY);
uart_clear_intr_status(UART_NUM_1, UART_INTR_TXFIFO_EMPTY);
/* Mark the interrupt as serviced */
uart_isr_happened = 1;
}
/**
* This function shall always be executed by core 0.
* This is required by `uart_isr_free`.
*/
static void uart_test_custom_isr_core0(void* param) {
/**
* Setup the UART1 and make sure we can register and free a custom ISR
*/
uart_config_t uart_config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_APB,
};
const uart_port_t uart_echo = UART_NUM_1;
const int uart_tx = 4;
const int uart_rx = 5;
const int buf_size = 256;
const int intr_alloc_flags = 0;
const char msg[] = "hello world\n";
uart_isr_handle_t handle = NULL;
TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
/* Prevent the custom ISR handler from being called if UART_INTR_BRK_DET interrupt occurs.
* It shall only be called for TX interrupts. */
uart_disable_intr_mask(uart_echo, UART_INTR_BRK_DET);
/* Unregister the default ISR setup by the function call above */
TEST_ESP_OK(uart_isr_free(uart_echo));
TEST_ESP_OK(uart_isr_register(uart_echo, uart_custom_isr, NULL, intr_alloc_flags, &handle));
/* Set the TX FIFO empty threshold to the size of the message we are sending,
* make sure it is never 0 in any case */
TEST_ESP_OK(uart_enable_tx_intr(uart_echo, true, MAX(sizeof(msg), 1)));
uart_write_bytes(uart_echo, msg, sizeof(msg));
/* 10ms will be enough to receive the interrupt */
vTaskDelay(10 / portTICK_PERIOD_MS);
/* Make sure the ISR occured */
TEST_ASSERT_EQUAL(uart_isr_happened, 1);
esp_rom_printf("ISR happened: %d\n", uart_isr_happened);
TEST_ESP_OK(uart_isr_free(uart_echo));
TEST_ESP_OK(uart_driver_delete(uart_echo));
#if !CONFIG_FREERTOS_UNICORE
TaskHandle_t* parent_task = (TaskHandle_t*) param;
esp_rom_printf("Notifying caller\n");
TEST_ASSERT(xTaskNotify(*parent_task, 0, eNoAction));
vTaskDelete(NULL);
#else
(void) param;
#endif //!CONFIG_FREERTOS_UNICORE
}
TEST_CASE("uart can register and free custom ISRs", "[uart]")
{
#if !CONFIG_FREERTOS_UNICORE
TaskHandle_t task_handle;
TaskHandle_t current_handler = xTaskGetCurrentTaskHandle();
/* Run the test on a determianted core, do not allow the core to be changed
* as we will manipulate ISRs. */
BaseType_t ret = xTaskCreatePinnedToCore(uart_test_custom_isr_core0,
"uart_test_custom_isr_core0_task",
2048,
&current_handler,
5,
&task_handle,
0);
TEST_ASSERT(ret);
TEST_ASSERT(xTaskNotifyWait(0, 0, NULL, 1000 / portTICK_PERIOD_MS));
(void) task_handle;
#else
uart_test_custom_isr_core0(NULL);
#endif //!CONFIG_FREERTOS_UNICORE
}