2022-02-17 11:44:34 +05:30
/*
* SPDX - FileCopyrightText : 2016 - 2022 Espressif Systems ( Shanghai ) CO LTD
*
* SPDX - License - Identifier : Apache - 2.0
*/
2019-12-26 15:25:24 +08:00
# pragma once
# include <stdint.h>
# include <stddef.h>
# include <stdlib.h>
# include "esp_err.h"
# include "soc/soc.h"
# include "ulp_common.h"
# ifdef __cplusplus
extern " C " {
# endif
/**
* @ defgroup ulp_registers ULP coprocessor registers
* @ {
*/
# define R0 0 /*!< general purpose register 0 */
# define R1 1 /*!< general purpose register 1 */
# define R2 2 /*!< general purpose register 2 */
# define R3 3 /*!< general purpose register 3 */
/**@}*/
/** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
*
* These definitions are not intended to be used directly .
* They are used in definitions of instructions later on .
*
* @ {
*/
# define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
# define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
# define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
# define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
# define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
# define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
# define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */
# define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
# define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */
# define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
2022-02-17 11:44:34 +05:30
# define SUB_OPCODE_ST_AUTO 1 /*!< Automatic Storage Mode - Access continuous addresses. Use SUB_OPCODE_ST_OFFSET to configure the initial address before using this instruction. */
# define SUB_OPCODE_ST_OFFSET 3 /*!< Automatic Storage Mode - Configure the initial address. */
# define SUB_OPCODE_ST 4 /*!< Manual Storage Mode. Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
2019-12-26 15:25:24 +08:00
# define OPCODE_ALU 7 /*!< Arithmetic instructions */
# define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
# define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
# define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
# define ALU_SEL_ADD 0 /*!< Addition */
# define ALU_SEL_SUB 1 /*!< Subtraction */
# define ALU_SEL_AND 2 /*!< Logical AND */
# define ALU_SEL_OR 3 /*!< Logical OR */
# define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
# define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
# define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
2022-02-17 11:44:34 +05:30
# define ALU_SEL_STAGE_INC 0 /*!< Increment stage count register */
# define ALU_SEL_STAGE_DEC 1 /*!< Decrement stage count register */
# define ALU_SEL_STAGE_RST 2 /*!< Reset stage count register */
2019-12-26 15:25:24 +08:00
# define OPCODE_BRANCH 8 /*!< Branch instructions */
2022-02-17 11:44:34 +05:30
# define SUB_OPCODE_B 0 /*!< Branch to a relative offset */
# define SUB_OPCODE_BX 1 /*!< Branch to absolute PC (immediate or in register) */
# define SUB_OPCODE_BS 2 /*!< Branch to a relative offset by comparing the stage_cnt register */
2019-12-26 15:25:24 +08:00
# define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
# define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
# define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
# define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
2022-02-17 11:44:34 +05:30
# define B_CMP_G 1 /*!< Branch if R0 is greater than an immediate */
# define B_CMP_E 2 /*!< Branch if R0 is equal to an immediate */
# define BS_CMP_L 0 /*!< Branch if stage_cnt is less than an immediate */
# define BS_CMP_GE 1 /*!< Branch if stage_cnt is greater than or equal to an immediate */
# define BS_CMP_LE 2 /*!< Branch if stage_cnt is less than or equal to an immediate */
2019-12-26 15:25:24 +08:00
# define OPCODE_END 9 /*!< Stop executing the program */
# define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
# define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
# define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */
# define OPCODE_HALT 11 /*!< Halt the coprocessor */
# define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
# define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
# define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
# define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
2022-02-17 11:44:34 +05:30
# define SUB_OPCODE_MACRO_LABELPC 2 /*!< Label pointer macro */
2019-12-26 15:25:24 +08:00
/**@}*/
/**
* @ brief Instruction format structure
*
* All ULP instructions are 32 bit long .
* This union contains field layouts used by all of the supported instructions .
* This union also includes a special " macro " instruction layout .
* This is not a real instruction which can be executed by the CPU . It acts
* as a token which is removed from the program by the
* ulp_process_macros_and_load function .
*
* These structures are not intended to be used directly .
* Preprocessor definitions provided below fill the fields of these structure with
* the right arguments .
*/
union ulp_insn {
struct {
uint32_t cycles : 16 ; /*!< Number of cycles to sleep */
uint32_t unused : 12 ; /*!< Unused */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_DELAY) */
} delay ; /*!< Format of DELAY instruction */
struct {
uint32_t dreg : 2 ; /*!< Register which contains data to store */
uint32_t sreg : 2 ; /*!< Register which contains address in RTC memory (expressed in words) */
2022-02-17 11:44:34 +05:30
uint32_t label : 2 ; /*!< Data label, 2-bit user defined unsigned value */
uint32_t upper : 1 ; /*!< 0: write the low half-word; 1: write the high half-word */
uint32_t wr_way : 2 ; /*!< 0: write the full-word; 1: with the label; 3: without the label */
uint32_t unused1 : 1 ; /*!< Unused */
2019-12-26 15:25:24 +08:00
uint32_t offset : 11 ; /*!< Offset to add to sreg */
uint32_t unused2 : 4 ; /*!< Unused */
uint32_t sub_opcode : 3 ; /*!< Sub opcode (SUB_OPCODE_ST) */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_ST) */
} st ; /*!< Format of ST instruction */
struct {
uint32_t dreg : 2 ; /*!< Register where the data should be loaded to */
uint32_t sreg : 2 ; /*!< Register which contains address in RTC memory (expressed in words) */
uint32_t unused1 : 6 ; /*!< Unused */
uint32_t offset : 11 ; /*!< Offset to add to sreg */
2022-02-17 11:44:34 +05:30
uint32_t unused2 : 6 ; /*!< Unused */
uint32_t rd_upper : 1 ; /*!< 0: read the high half-word; 1: read the low half-word*/
2019-12-26 15:25:24 +08:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_LD) */
} ld ; /*!< Format of LD instruction */
struct {
uint32_t unused : 28 ; /*!< Unused */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_HALT) */
} halt ; /*!< Format of HALT instruction */
struct {
uint32_t dreg : 2 ; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
uint32_t addr : 11 ; /*!< Target PC, expressed in words (used if .reg == 0) */
2022-02-17 11:44:34 +05:30
uint32_t unused1 : 8 ; /*!< Unused */
2019-12-26 15:25:24 +08:00
uint32_t reg : 1 ; /*!< Target PC in register (1) or immediate (0) */
uint32_t type : 3 ; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
2022-02-17 11:44:34 +05:30
uint32_t unused2 : 1 ; /*!< Unused */
uint32_t sub_opcode : 2 ; /*!< Sub opcode (SUB_OPCODE_BX) */
2019-12-26 15:25:24 +08:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_BRANCH) */
} bx ; /*!< Format of BRANCH instruction (absolute address) */
struct {
uint32_t imm : 16 ; /*!< Immediate value to compare against */
2022-02-17 11:44:34 +05:30
uint32_t cmp : 2 ; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
2019-12-26 15:25:24 +08:00
uint32_t offset : 7 ; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
uint32_t sign : 1 ; /*!< Sign of target PC offset: 0: positive, 1: negative */
2022-02-17 11:44:34 +05:30
uint32_t sub_opcode : 2 ; /*!< Sub opcode (SUB_OPCODE_B) */
2019-12-26 15:25:24 +08:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_BRANCH) */
} b ; /*!< Format of BRANCH instruction (relative address) */
struct {
uint32_t dreg : 2 ; /*!< Destination register */
uint32_t sreg : 2 ; /*!< Register with operand A */
uint32_t treg : 2 ; /*!< Register with operand B */
2022-02-17 11:44:34 +05:30
uint32_t unused1 : 15 ; /*!< Unused */
2019-12-26 15:25:24 +08:00
uint32_t sel : 4 ; /*!< Operation to perform, one of ALU_SEL_xxx */
2022-02-17 11:44:34 +05:30
uint32_t unused2 : 1 ; /*!< Unused */
uint32_t sub_opcode : 2 ; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
2019-12-26 15:25:24 +08:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_ALU) */
} alu_reg ; /*!< Format of ALU instruction (both sources are registers) */
struct {
uint32_t dreg : 2 ; /*!< Destination register */
uint32_t sreg : 2 ; /*!< Register with operand A */
uint32_t imm : 16 ; /*!< Immediate value of operand B */
2022-02-17 11:44:34 +05:30
uint32_t unused1 : 1 ; /*!< Unused */
2019-12-26 15:25:24 +08:00
uint32_t sel : 4 ; /*!< Operation to perform, one of ALU_SEL_xxx */
2022-02-17 11:44:34 +05:30
uint32_t unused2 : 1 ; /*!< Unused */
uint32_t sub_opcode : 2 ; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
2019-12-26 15:25:24 +08:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_ALU) */
} alu_imm ; /*!< Format of ALU instruction (one source is an immediate) */
2022-02-17 11:44:34 +05:30
struct {
uint32_t unused1 : 4 ; /*!< Unused */
uint32_t imm : 8 ; /*!< Immediate value */
uint32_t unused2 : 9 ; /*!< Unused */
uint32_t sel : 4 ; /*!< Operation to perform, one of ALU_SEL_xxx */
uint32_t unused3 : 1 ; /*!< Unused */
uint32_t sub_opcode : 2 ; /*!< Sub opcode (SUB_OPCODE_ALU_CNT) */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_ALU) */
} alu_cnt ; /*!< Format of ALU instruction with stage count register and an immediate */
2019-12-26 15:25:24 +08:00
struct {
uint32_t addr : 8 ; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
uint32_t periph_sel : 2 ; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
uint32_t data : 8 ; /*!< 8 bits of data to write */
uint32_t low : 5 ; /*!< Low bit */
uint32_t high : 5 ; /*!< High bit */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_WR_REG) */
} wr_reg ; /*!< Format of WR_REG instruction */
struct {
uint32_t addr : 8 ; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
uint32_t periph_sel : 2 ; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
uint32_t unused : 8 ; /*!< Unused */
uint32_t low : 5 ; /*!< Low bit */
uint32_t high : 5 ; /*!< High bit */
2019-09-19 23:13:14 +10:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_RD_REG) */
2019-12-26 15:25:24 +08:00
} rd_reg ; /*!< Format of RD_REG instruction */
struct {
uint32_t dreg : 2 ; /*!< Register where to store ADC result */
uint32_t mux : 4 ; /*!< Select SARADC pad (mux + 1) */
uint32_t sar_sel : 1 ; /*!< Select SARADC0 (0) or SARADC1 (1) */
uint32_t unused1 : 1 ; /*!< Unused */
uint32_t cycles : 16 ; /*!< TBD, cycles used for measurement */
uint32_t unused2 : 4 ; /*!< Unused */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_ADC) */
} adc ; /*!< Format of ADC instruction */
struct {
uint32_t dreg : 2 ; /*!< Register where to store temperature measurement result */
uint32_t wait_delay : 14 ; /*!< Cycles to wait after measurement is done */
uint32_t reserved : 12 ; /*!< Reserved, set to 0 */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_TSENS) */
} tsens ; /*!< Format of TSENS instruction */
struct {
uint32_t i2c_addr : 8 ; /*!< I2C slave address */
uint32_t data : 8 ; /*!< Data to read or write */
uint32_t low_bits : 3 ; /*!< TBD */
uint32_t high_bits : 3 ; /*!< TBD */
uint32_t i2c_sel : 4 ; /*!< TBD, select reg_i2c_slave_address[7:0] */
uint32_t unused : 1 ; /*!< Unused */
uint32_t rw : 1 ; /*!< Write (1) or read (0) */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_I2C) */
} i2c ; /*!< Format of I2C instruction */
struct {
uint32_t wakeup : 1 ; /*!< Set to 1 to wake up chip */
2022-02-17 11:44:34 +05:30
uint32_t unused : 25 ; /*!< Unused */
uint32_t sub_opcode : 2 ; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
2019-12-26 15:25:24 +08:00
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_END) */
} end ; /*!< Format of END instruction with wakeup */
struct {
uint32_t label : 16 ; /*!< Label number */
uint32_t unused : 8 ; /*!< Unused */
uint32_t sub_opcode : 4 ; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
uint32_t opcode : 4 ; /*!< Opcode (OPCODE_MACRO) */
} macro ; /*!< Format of tokens used by LABEL and BRANCH macros */
} ;
2022-02-17 11:44:34 +05:30
_Static_assert ( sizeof ( ulp_insn_t ) = = 4 , " ULP coprocessor instruction size should be 4 bytes " ) ;
2019-12-26 15:25:24 +08:00
/**
* Delay ( nop ) for a given number of cycles
*/
# define I_DELAY(cycles_) { .delay = {\
. cycles = cycles_ , \
. unused = 0 , \
. opcode = OPCODE_DELAY } }
/**
* Halt the coprocessor .
*
* This instruction halts the coprocessor , but keeps ULP timer active .
* As such , ULP program will be restarted again by timer .
* To stop the program and prevent the timer from restarting the program ,
* use I_END ( 0 ) instruction .
*/
# define I_HALT() { .halt = {\
. unused = 0 , \
. opcode = OPCODE_HALT } }
/**
* Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
* instructions .
*
* @ param reg peripheral register in RTC_CNTL_ , RTC_IO_ , SENS_ , RTC_I2C peripherals .
* @ return periph_sel value for the peripheral to which this register belongs .
*/
2022-02-17 11:44:34 +05:30
static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL ( uint32_t reg )
{
2019-12-26 15:25:24 +08:00
uint32_t ret = 3 ;
if ( reg < DR_REG_RTCCNTL_BASE ) {
assert ( 0 & & " invalid register base " ) ;
} else if ( reg < DR_REG_RTCIO_BASE ) {
ret = RD_REG_PERIPH_RTC_CNTL ;
} else if ( reg < DR_REG_SENS_BASE ) {
ret = RD_REG_PERIPH_RTC_IO ;
2022-02-17 11:44:34 +05:30
} else if ( reg < DR_REG_RTC_I2C_BASE ) {
2019-12-26 15:25:24 +08:00
ret = RD_REG_PERIPH_SENS ;
2022-02-17 11:44:34 +05:30
} else if ( reg < DR_REG_IO_MUX_BASE ) {
2019-12-26 15:25:24 +08:00
ret = RD_REG_PERIPH_RTC_I2C ;
} else {
assert ( 0 & & " invalid register base " ) ;
}
return ret ;
}
/**
* Write literal value to a peripheral register
*
* reg [ high_bit : low_bit ] = val
* This instruction can access RTC_CNTL_ , RTC_IO_ , SENS_ , and RTC_I2C peripheral registers .
*/
# define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
. addr = ( reg & 0xff ) / sizeof ( uint32_t ) , \
. periph_sel = SOC_REG_TO_ULP_PERIPH_SEL ( reg ) , \
. data = val , \
. low = low_bit , \
. high = high_bit , \
. opcode = OPCODE_WR_REG } }
/**
* Read from peripheral register into R0
*
* R0 = reg [ high_bit : low_bit ]
* This instruction can access RTC_CNTL_ , RTC_IO_ , SENS_ , and RTC_I2C peripheral registers .
*/
# define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
. addr = ( reg & 0xff ) / sizeof ( uint32_t ) , \
. periph_sel = SOC_REG_TO_ULP_PERIPH_SEL ( reg ) , \
. unused = 0 , \
. low = low_bit , \
. high = high_bit , \
. opcode = OPCODE_RD_REG } }
/**
* Set or clear a bit in the peripheral register .
*
* Sets bit ( 1 < < shift ) of register reg to value val .
* This instruction can access RTC_CNTL_ , RTC_IO_ , SENS_ , and RTC_I2C peripheral registers .
*/
# define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
/**
* Wake the SoC from deep sleep .
*
* This instruction initiates wake up from deep sleep .
* Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
* triggered by the ULP before going into deep sleep .
* Note that ULP program will still keep running until the I_HALT
* instruction , and it will still be restarted by timer at regular
* intervals , even when the SoC is woken up .
*
* To stop the ULP program , use I_HALT instruction .
*
* To disable the timer which start ULP program , use I_END ( )
* instruction . I_END instruction clears the
2022-02-17 11:44:34 +05:30
* RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_ULP_CP_TIMER_REG
2019-12-26 15:25:24 +08:00
* register , which controls the ULP timer .
*/
# define I_WAKE() { .end = { \
. wakeup = 1 , \
. unused = 0 , \
. sub_opcode = SUB_OPCODE_END , \
. opcode = OPCODE_END } }
/**
* Stop ULP program timer .
*
* This is a convenience macro which disables the ULP program timer .
* Once this instruction is used , ULP program will not be restarted
* anymore until ulp_run function is called .
*
* ULP program will continue running after this instruction . To stop
* the currently running program , use I_HALT ( ) .
*/
# define I_END() \
2022-02-17 11:44:34 +05:30
I_WR_REG_BIT ( RTC_CNTL_ULP_CP_TIMER_REG , RTC_CNTL_ULP_CP_SLP_TIMER_EN_S , 0 )
2019-12-26 15:25:24 +08:00
/**
* Perform temperature sensor measurement and store it into reg_dest .
*
* Delay can be set between 1 and ( ( 1 < < 14 ) - 1 ) . Higher values give
* higher measurement resolution .
*/
# define I_TSENS(reg_dest, delay) { .tsens = { \
. dreg = reg_dest , \
. wait_delay = delay , \
. reserved = 0 , \
. opcode = OPCODE_TSENS } }
/**
* Perform ADC measurement and store result in reg_dest .
*
* adc_idx selects ADC ( 0 or 1 ) .
* pad_idx selects ADC pad ( 0 - 7 ) .
*/
# define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
. dreg = reg_dest , \
. mux = pad_idx + 1 , \
. sar_sel = adc_idx , \
. unused1 = 0 , \
. cycles = 0 , \
. unused2 = 0 , \
. opcode = OPCODE_ADC } }
/**
2022-02-17 11:44:34 +05:30
* Store lower half - word , upper half - word or full - word data from register reg_val into RTC memory address .
2019-12-26 15:25:24 +08:00
*
2022-02-17 11:44:34 +05:30
* This instruction can be used to write data to discontinuous addresses in the RTC_SLOW_MEM .
* The value is written to an offset calculated by adding the value of
2019-12-26 15:25:24 +08:00
* reg_addr register and offset_ field ( this offset is expressed in 32 - bit words ) .
2022-02-17 11:44:34 +05:30
* The storage method is dictated by the wr_way and upper field settings as summarized in the following table :
2019-12-26 15:25:24 +08:00
*
2022-02-17 11:44:34 +05:30
* @ verbatim
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | wr_way | upper | data | operation |
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Write full - word , including |
* | 0 | X | RTC_SLOW_MEM [ addr + offset_ ] { 31 : 0 } = { insn_PC [ 10 : 0 ] , 3 ’ b0 , label_ [ 1 : 0 ] , reg_val [ 15 : 0 ] } | the PC and the data |
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data with label |
* | 1 | 0 | RTC_SLOW_MEM [ addr + offset_ ] { 15 : 0 } = { label_ [ 1 : 0 ] , reg_val [ 13 : 0 ] } | in the low half - word |
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data with label |
* | 1 | 1 | RTC_SLOW_MEM [ addr + offset_ ] { 31 : 16 } = { label_ [ 1 : 0 ] , reg_val [ 13 : 0 ] } | in the high half - word |
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data without |
* | 3 | 0 | RTC_SLOW_MEM [ addr + offset_ ] { 15 : 0 } = reg_val [ 15 : 0 ] | label in the low half - word |
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data without |
* | 3 | 1 | RTC_SLOW_MEM [ addr + offset_ ] { 31 : 16 } = reg_val [ 15 : 0 ] | label in the high half - word |
* | - - - - - - - - | - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* @ endverbatim
*
* SUB_OPCODE_ST = manual_en : 1 , offset_set : 0 , wr_auto : 0
2019-12-26 15:25:24 +08:00
*/
2022-02-17 11:44:34 +05:30
# define I_ST_MANUAL(reg_val, reg_addr, offset_, label_, upper_, wr_way_) { .st = { \
2019-12-26 15:25:24 +08:00
. dreg = reg_val , \
. sreg = reg_addr , \
2022-02-17 11:44:34 +05:30
. label = label_ , \
. upper = upper_ , \
. wr_way = wr_way_ , \
2019-12-26 15:25:24 +08:00
. unused1 = 0 , \
. offset = offset_ , \
. unused2 = 0 , \
. sub_opcode = SUB_OPCODE_ST , \
. opcode = OPCODE_ST } }
2022-02-17 11:44:34 +05:30
/**
* Store value from register reg_val into RTC memory .
*
* I_ST ( ) instruction provides backward compatibility for code written for esp32 to be run on esp32s2 .
* This instruction is equivalent to calling I_ST_MANUAL ( ) instruction with label = 0 , upper = 0 and wr_way = 3.
*/
# define I_ST(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 0, 3)
2019-12-26 15:25:24 +08:00
/**
2022-02-17 11:44:34 +05:30
* Store value from register reg_val to lower 16 bits of the RTC memory address .
2019-12-26 15:25:24 +08:00
*
2022-02-17 11:44:34 +05:30
* This instruction is equivalent to calling I_ST_MANUAL ( ) instruction with label = 0 , upper = 0 and wr_way = 3.
*/
# define I_STL(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 0, 3)
/**
* Store value from register reg_val to upper 16 bits of the RTC memory address .
*
* This instruction is equivalent to calling I_ST_MANUAL ( ) instruction with label = 0 , upper = 1 and wr_way = 3.
*/
# define I_STH(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 1, 3)
/**
* Store value from register reg_val to full 32 bit word of the RTC memory address .
*
* This instruction is equivalent to calling I_ST_MANUAL ( ) instruction with wr_way = 0.
*/
# define I_ST32(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 0, 0)
/**
* Store value from register reg_val with label to lower 16 bits of RTC memory address .
*
* This instruction is equivalent to calling I_ST_MANUAL ( ) instruction with label = label_ , upper = 0 and wr_way = 1.
*/
# define I_STL_LABEL(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 0, 1)
/**
* Store value from register reg_val with label to upper 16 bits of RTC memory address .
*
* This instruction is equivalent to calling I_ST_MANUAL ( ) instruction with label = label_ , upper = 1 and wr_way = 1.
*/
# define I_STH_LABEL(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 1, 1)
/**
* Store lower half - word , upper half - word or full - word data from register reg_val into RTC memory address with auto - increment of the offset value .
*
* This instruction can be used to write data to continuous addresses in the RTC_SLOW_MEM .
* The initial address must be set using the SUB_OPCODE_ST_OFFSET instruction before the auto store instruction is called .
* The data written to the RTC memory address could be written to the full 32 bit word or to the lower half - word or the
* upper half - word . The storage method is dictated by the wr_way field and the number of times the SUB_OPCODE_ST_AUTO instruction is called .
* write_cnt indicates the later . The following table summarizes the storage method :
*
* @ verbatim
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | wr_way | write_cnt | data | operation |
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Write full - word , including |
* | 0 | X | RTC_SLOW_MEM [ addr + offset_ ] { 31 : 0 } = { insn_PC [ 10 : 0 ] , 3 ’ b0 , label_ [ 1 : 0 ] , reg_val [ 15 : 0 ] } | the PC and the data |
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data with label |
* | 1 | odd | RTC_SLOW_MEM [ addr + offset_ ] { 15 : 0 } = { label_ [ 1 : 0 ] , reg_val [ 13 : 0 ] } | in the low half - word |
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data with label |
* | 1 | even | RTC_SLOW_MEM [ addr + offset_ ] { 31 : 16 } = { label_ [ 1 : 0 ] , reg_val [ 13 : 0 ] } | in the high half - word |
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data without |
* | 3 | odd | RTC_SLOW_MEM [ addr + offset_ ] { 15 : 0 } = reg_val [ 15 : 0 ] | label in the low half - word |
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | | Store the data without |
* | 3 | even | RTC_SLOW_MEM [ addr + offset_ ] { 31 : 16 } = reg_val [ 15 : 0 ] | label in the high half - word |
* | - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* @ endverbatim
*
* The initial address offset is incremented after each store operation as follows :
* - When a full - word is written , the offset is automatically incremented by 1 after each SUB_OPCODE_ST_AUTO operation .
* - When a half - word is written ( lower half - word first ) , the offset is automatically incremented by 1 after two
* SUB_OPCODE_ST_AUTO operations .
*
* SUB_OPCODE_ST_AUTO = manual_en : 0 , offset_set : 0 , wr_auto : 1
*/
# define I_ST_AUTO(reg_val, reg_addr, label_, wr_way_) { .st = { \
. dreg = reg_addr , \
. sreg = reg_val , \
. label = label_ , \
. upper = 0 , \
. wr_way = wr_way_ , \
. unused1 = 0 , \
. offset = 0 , \
. unused2 = 0 , \
. sub_opcode = SUB_OPCODE_ST_AUTO , \
. opcode = OPCODE_ST } }
/**
* Set the initial address offset for auto - store operation
*
* This instruction sets the initial address of the RTC_SLOW_MEM to be used by the auto - store operation .
* The offset is incremented automatically .
* Refer I_ST_AUTO ( ) for detailed explaination .
*
* SUB_OPCODE_ST_OFFSET = manual_en : 0 , offset_set : 1 , wr_auto : 1
2019-12-26 15:25:24 +08:00
*/
2022-02-17 11:44:34 +05:30
# define I_STO(offset_) { .st = { \
. dreg = 0 , \
. sreg = 0 , \
. label = 0 , \
. upper = 0 , \
. wr_way = 0 , \
. unused1 = 0 , \
. offset = offset_ , \
. unused2 = 0 , \
. sub_opcode = SUB_OPCODE_ST_OFFSET , \
. opcode = OPCODE_ST } }
/**
* Store value from register reg_val to 32 bit word of the RTC memory address .
*
* This instruction is equivalent to calling I_ST_AUTO ( ) instruction with label = 0 and wr_way = 3.
* The data in reg_val will be either written to the lower half - word or the upper half - word of the RTC memory address
* depending on the count of the number of times the I_STI ( ) instruction is called .
* The initial offset is automatically incremented with I_STI ( ) is called twice .
* Refer I_ST_AUTO ( ) for detailed explaination .
*/
# define I_STI(reg_val, reg_addr) I_ST_AUTO(reg_val, reg_addr, 0, 3)
/**
* Store value from register reg_val with label to 32 bit word of the RTC memory address .
*
* This instruction is equivalent to calling I_ST_AUTO ( ) instruction with label = label_ and wr_way = 1.
* The data in reg_val will be either written to the lower half - word or the upper half - word of the RTC memory address
* depending on the count of the number of times the I_STI_LABEL ( ) instruction is called .
* The initial offset is automatically incremented with I_STI_LABEL ( ) is called twice .
* Refer I_ST_AUTO ( ) for detailed explaination .
*/
# define I_STI_LABEL(reg_val, reg_addr, label_) I_ST_AUTO(reg_val, reg_addr, label_, 1)
/**
* Store value from register reg_val to full 32 bit word of the RTC memory address .
*
* This instruction is equivalent to calling I_ST_AUTO ( ) instruction with label = label_ and wr_way = 0.
* The data in reg_val will be written to the RTC memory address along with the label and the PC .
* The initial offset is automatically incremented each time the I_STI32 ( ) instruction is called .
* Refer I_ST_AUTO ( ) for detailed explaination .
*/
# define I_STI32(reg_val, reg_addr, label_) I_ST_AUTO(reg_val, reg_addr, label_, 0)
/**
* Load lower half - word , upper half - word or full - word data from RTC memory address into the register reg_dest .
*
* This instruction reads the lower half - word or upper half - word of the RTC memory address depending on the value
* of rd_upper_ . The following table summarizes the loading method :
*
* @ verbatim
* | - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - |
* | rd_upper | data | operation |
* | - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | Read lower half - word of |
* | 0 | reg_dest { 15 : 0 } = RTC_SLOW_MEM [ addr + offset_ ] { 31 : 16 } | the memory |
* | - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - |
* | | | Read upper half - word of |
* | 1 | reg_dest { 15 : 0 } = RTC_SLOW_MEM [ addr + offset_ ] { 15 : 0 } | the memory |
* | - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - |
* @ endverbatim
*
*/
# define I_LD_MANUAL(reg_dest, reg_addr, offset_, rd_upper_) { .ld = { \
2019-12-26 15:25:24 +08:00
. dreg = reg_dest , \
. sreg = reg_addr , \
. unused1 = 0 , \
. offset = offset_ , \
. unused2 = 0 , \
2022-02-17 11:44:34 +05:30
. rd_upper = rd_upper_ , \
2019-12-26 15:25:24 +08:00
. opcode = OPCODE_LD } }
2022-02-17 11:44:34 +05:30
/**
* Load lower 16 bits value from RTC memory into reg_dest register .
*
* Loads 16 LSBs ( rd_upper = 1 ) from RTC memory word given by the sum of value in reg_addr and
* value of offset_ .
* I_LD ( ) instruction provides backward compatibility for code written for esp32 to be run on esp32s2 .
*/
# define I_LD(reg_dest, reg_addr, offset_) I_LD_MANUAL(reg_dest, reg_addr, offset_, 0)
/**
* Load lower 16 bits value from RTC memory into reg_dest register .
*
* I_LDL ( ) instruction and I_LD ( ) instruction can be used interchangably .
*/
# define I_LDL(reg_dest, reg_addr, offset_) I_LD(reg_dest, reg_addr, offset_)
/**
* Load upper 16 bits value from RTC memory into reg_dest register .
*
* Loads 16 MSBs ( rd_upper = 0 ) from RTC memory word given by the sum of value in reg_addr and
* value of offset_ .
*/
# define I_LDH(reg_dest, reg_addr, offset_) I_LD_MANUAL(reg_dest, reg_addr, offset_, 1)
2019-12-26 15:25:24 +08:00
/**
2022-02-17 11:44:34 +05:30
* Branch relative if R0 register less than the immediate value .
2019-12-26 15:25:24 +08:00
*
* pc_offset is expressed in words , and can be from - 127 to 127
* imm_value is a 16 - bit value to compare R0 against
*/
# define I_BL(pc_offset, imm_value) { .b = { \
. imm = imm_value , \
. cmp = B_CMP_L , \
. offset = abs ( pc_offset ) , \
. sign = ( pc_offset > = 0 ) ? 0 : 1 , \
. sub_opcode = SUB_OPCODE_B , \
. opcode = OPCODE_BRANCH } }
/**
2022-02-17 11:44:34 +05:30
* Branch relative if R0 register greater than the immediate value .
*
* pc_offset is expressed in words , and can be from - 127 to 127
* imm_value is a 16 - bit value to compare R0 against
*/
# define I_BG(pc_offset, imm_value) { .b = { \
. imm = imm_value , \
. cmp = B_CMP_G , \
. offset = abs ( pc_offset ) , \
. sign = ( pc_offset > = 0 ) ? 0 : 1 , \
. sub_opcode = SUB_OPCODE_B , \
. opcode = OPCODE_BRANCH } }
/**
* Branch relative if R0 register is equal to the immediate value .
2019-12-26 15:25:24 +08:00
*
* pc_offset is expressed in words , and can be from - 127 to 127
* imm_value is a 16 - bit value to compare R0 against
*/
2022-02-17 11:44:34 +05:30
# define I_BE(pc_offset, imm_value) { .b = { \
2019-12-26 15:25:24 +08:00
. imm = imm_value , \
2022-02-17 11:44:34 +05:30
. cmp = B_CMP_E , \
2019-12-26 15:25:24 +08:00
. offset = abs ( pc_offset ) , \
. sign = ( pc_offset > = 0 ) ? 0 : 1 , \
. sub_opcode = SUB_OPCODE_B , \
. opcode = OPCODE_BRANCH } }
/**
* Unconditional branch to absolute PC , address in register .
*
* reg_pc is the register which contains address to jump to .
* Address is expressed in 32 - bit words .
*/
# define I_BXR(reg_pc) { .bx = { \
. dreg = reg_pc , \
. addr = 0 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. reg = 1 , \
. type = BX_JUMP_TYPE_DIRECT , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_BX , \
. opcode = OPCODE_BRANCH } }
/**
* Unconditional branch to absolute PC , immediate address .
*
* Address imm_pc is expressed in 32 - bit words .
*/
# define I_BXI(imm_pc) { .bx = { \
. dreg = 0 , \
. addr = imm_pc , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. reg = 0 , \
. type = BX_JUMP_TYPE_DIRECT , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_BX , \
. opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU result is zero , address in register .
*
* reg_pc is the register which contains address to jump to .
* Address is expressed in 32 - bit words .
*/
# define I_BXZR(reg_pc) { .bx = { \
. dreg = reg_pc , \
. addr = 0 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. reg = 1 , \
. type = BX_JUMP_TYPE_ZERO , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_BX , \
. opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU result is zero , immediate address .
*
* Address imm_pc is expressed in 32 - bit words .
*/
# define I_BXZI(imm_pc) { .bx = { \
. dreg = 0 , \
. addr = imm_pc , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. reg = 0 , \
. type = BX_JUMP_TYPE_ZERO , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_BX , \
. opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU overflow , address in register
*
* reg_pc is the register which contains address to jump to .
* Address is expressed in 32 - bit words .
*/
# define I_BXFR(reg_pc) { .bx = { \
. dreg = reg_pc , \
. addr = 0 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. reg = 1 , \
. type = BX_JUMP_TYPE_OVF , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_BX , \
. opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU overflow , immediate address
*
* Address imm_pc is expressed in 32 - bit words .
*/
# define I_BXFI(imm_pc) { .bx = { \
. dreg = 0 , \
. addr = imm_pc , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. reg = 0 , \
. type = BX_JUMP_TYPE_OVF , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_BX , \
. opcode = OPCODE_BRANCH } }
2022-02-17 11:44:34 +05:30
/**
* Branch relative if stage_cnt is less than or equal to the immediate value .
*
* pc_offset is expressed in words , and can be from - 127 to 127
* imm_value is a 16 - bit value to compare R0 against
*/
# define I_BSLE(pc_offset, imm_value) { .b = { \
. imm = imm_value , \
. cmp = BS_CMP_LE , \
. offset = abs ( pc_offset ) , \
. sign = ( pc_offset > = 0 ) ? 0 : 1 , \
. sub_opcode = SUB_OPCODE_BS , \
. opcode = OPCODE_BRANCH } }
/**
* Branch relative if stage_cnt register is greater than or equal to the immediate value .
*
* pc_offset is expressed in words , and can be from - 127 to 127
* imm_value is a 16 - bit value to compare R0 against
*/
# define I_BSGE(pc_offset, imm_value) { .b = { \
. imm = imm_value , \
. cmp = BS_CMP_GE , \
. offset = abs ( pc_offset ) , \
. sign = ( pc_offset > = 0 ) ? 0 : 1 , \
. sub_opcode = SUB_OPCODE_BS , \
. opcode = OPCODE_BRANCH } }
/**
* Branch relative if stage_cnt register is less than the immediate value .
*
* pc_offset is expressed in words , and can be from - 127 to 127
* imm_value is a 16 - bit value to compare R0 against
*/
# define I_BSL(pc_offset, imm_value) { .b = { \
. imm = imm_value , \
. cmp = BS_CMP_L , \
. offset = abs ( pc_offset ) , \
. sign = ( pc_offset > = 0 ) ? 0 : 1 , \
. sub_opcode = SUB_OPCODE_BS , \
. opcode = OPCODE_BRANCH } }
2019-12-26 15:25:24 +08:00
/**
* Addition : dest = src1 + src2
*/
# define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src1 , \
. treg = reg_src2 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_ADD , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Subtraction : dest = src1 - src2
*/
# define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src1 , \
. treg = reg_src2 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_SUB , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Logical AND : dest = src1 & src2
*/
# define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src1 , \
. treg = reg_src2 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_AND , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Logical OR : dest = src1 | src2
*/
# define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src1 , \
. treg = reg_src2 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_OR , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Copy : dest = src
*/
# define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. treg = 0 , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_MOV , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Logical shift left : dest = src < < shift
*/
# define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. treg = reg_shift , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_LSH , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Logical shift right : dest = src > > shift
*/
# define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. treg = reg_shift , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_RSH , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_REG , \
. opcode = OPCODE_ALU } }
/**
* Add register and an immediate value : dest = src1 + imm
*/
# define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_ADD , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
/**
* Subtract register and an immediate value : dest = src - imm
*/
# define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_SUB , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
/**
* Logical AND register and an immediate value : dest = src & imm
*/
# define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_AND , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
/**
* Logical OR register and an immediate value : dest = src | imm
*/
# define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_OR , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
/**
* Copy an immediate value into register : dest = imm
*/
# define I_MOVI(reg_dest, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = 0 , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_MOV , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
/**
* Logical shift left register value by an immediate : dest = src < < imm
*/
# define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_LSH , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
/**
* Logical shift right register value by an immediate : dest = val > > imm
*/
# define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
. dreg = reg_dest , \
. sreg = reg_src , \
. imm = imm_ , \
2022-02-17 11:44:34 +05:30
. unused1 = 0 , \
2019-12-26 15:25:24 +08:00
. sel = ALU_SEL_RSH , \
2022-02-17 11:44:34 +05:30
. unused2 = 0 , \
2019-12-26 15:25:24 +08:00
. sub_opcode = SUB_OPCODE_ALU_IMM , \
. opcode = OPCODE_ALU } }
2022-02-17 11:44:34 +05:30
/**
* Increment stage_cnt register by an immediate : stage_cnt = stage_cnt + imm
*/
# define I_STAGE_INC(reg_dest, reg_src, imm_) { .alu_cnt = { \
. unused1 = 0 , \
. imm = imm_ , \
. unused2 = 0 , \
. sel = ALU_SEL_STAGE_INC , \
. unused3 = 0 , \
. sub_opcode = SUB_OPCODE_ALU_CNT , \
. opcode = OPCODE_ALU } }
/**
* Decrement stage_cnt register by an immediate : stage_cnt = stage_cnt - imm
*/
# define I_STAGE_DEC(reg_dest, reg_src, imm_) { .alu_cnt = { \
. unused1 = 0 , \
. imm = imm_ , \
. unused2 = 0 , \
. sel = ALU_SEL_STAGE_DEC , \
. unused3 = 0 , \
. sub_opcode = SUB_OPCODE_ALU_CNT , \
. opcode = OPCODE_ALU } }
/**
* Reset stage_cnt register by an immediate : stage_cnt = 0
*/
# define I_STAGE_RST(reg_dest, reg_src, imm_) { .alu_cnt = { \
. unused1 = 0 , \
. imm = imm_ , \
. unused2 = 0 , \
. sel = ALU_SEL_STAGE_RST , \
. unused3 = 0 , \
. sub_opcode = SUB_OPCODE_ALU_CNT , \
. opcode = OPCODE_ALU } }
2019-12-26 15:25:24 +08:00
/**
* Define a label with number label_num .
*
* This is a macro which doesn ' t generate a real instruction .
* The token generated by this macro is removed by ulp_process_macros_and_load
* function . Label defined using this macro can be used in branch macros defined
* below .
*/
# define M_LABEL(label_num) { .macro = { \
. label = label_num , \
. unused = 0 , \
. sub_opcode = SUB_OPCODE_MACRO_LABEL , \
. opcode = OPCODE_MACRO } }
/**
* Token macro used by M_B and M_BX macros . Not to be used directly .
*/
# define M_BRANCH(label_num) { .macro = { \
. label = label_num , \
. unused = 0 , \
. sub_opcode = SUB_OPCODE_MACRO_BRANCH , \
. opcode = OPCODE_MACRO } }
/**
* Macro : branch to label label_num if R0 is less than immediate value .
*
* This macro generates two ulp_insn_t values separated by a comma , and should
* be used when defining contents of ulp_insn_t arrays . First value is not a
* real instruction ; it is a token which is removed by ulp_process_macros_and_load
* function .
*/
# define M_BL(label_num, imm_value) \
M_BRANCH ( label_num ) , \
I_BL ( 0 , imm_value )
/**
2022-02-17 11:44:34 +05:30
* Macro : branch to label label_num if R0 is greater than immediate value
*
* This macro generates two ulp_insn_t values separated by a comma , and should
* be used when defining contents of ulp_insn_t arrays . First value is not a
* real instruction ; it is a token which is removed by ulp_process_macros_and_load
* function .
*/
# define M_BG(label_num, imm_value) \
M_BRANCH ( label_num ) , \
I_BG ( 0 , imm_value )
/**
* Macro : branch to label label_num if R0 equal to the immediate value
2019-12-26 15:25:24 +08:00
*
* This macro generates two ulp_insn_t values separated by a comma , and should
* be used when defining contents of ulp_insn_t arrays . First value is not a
* real instruction ; it is a token which is removed by ulp_process_macros_and_load
* function .
*/
2022-02-17 11:44:34 +05:30
# define M_BE(label_num, imm_value) \
2019-12-26 15:25:24 +08:00
M_BRANCH ( label_num ) , \
2022-02-17 11:44:34 +05:30
I_BE ( 0 , imm_value )
2019-12-26 15:25:24 +08:00
/**
* Macro : unconditional branch to label
*
* This macro generates two ulp_insn_t values separated by a comma , and should
* be used when defining contents of ulp_insn_t arrays . First value is not a
* real instruction ; it is a token which is removed by ulp_process_macros_and_load
* function .
*/
# define M_BX(label_num) \
M_BRANCH ( label_num ) , \
I_BXI ( 0 )
/**
* Macro : branch to label if ALU result is zero
*
* This macro generates two ulp_insn_t values separated by a comma , and should
* be used when defining contents of ulp_insn_t arrays . First value is not a
* real instruction ; it is a token which is removed by ulp_process_macros_and_load
* function .
*/
# define M_BXZ(label_num) \
M_BRANCH ( label_num ) , \
I_BXZI ( 0 )
/**
* Macro : branch to label if ALU overflow
*
* This macro generates two ulp_insn_t values separated by a comma , and should
* be used when defining contents of ulp_insn_t arrays . First value is not a
* real instruction ; it is a token which is removed by ulp_process_macros_and_load
* function .
*/
# define M_BXF(label_num) \
M_BRANCH ( label_num ) , \
I_BXFI ( 0 )
# define RTC_SLOW_MEM ((uint32_t*) 0x50000000) /*!< RTC slow memory, 8k size */
# ifdef __cplusplus
}
# endif