esp-idf/components/driver/parlio/parlio_rx.c

905 lines
41 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <stdatomic.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/idf_additions.h"
#if CONFIG_PARLIO_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "esp_log.h"
#include "esp_check.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_rom_gpio.h"
#include "esp_pm.h"
#include "soc/parlio_periph.h"
#include "hal/parlio_ll.h"
#include "hal/gpio_hal.h"
#include "hal/dma_types.h"
#include "driver/gpio.h"
#include "driver/parlio_rx.h"
#include "parlio_private.h"
#include "esp_memory_utils.h"
#include "esp_clk_tree.h"
#include "esp_attr.h"
#include "esp_private/gdma.h"
static const char *TAG = "parlio-rx";
/**
* @brief Parlio RX transaction
*/
typedef struct {
parlio_rx_delimiter_handle_t delimiter; /*!< Delimiter of this transaction */
void *payload; /*!< The payload of this transaction, will be mounted to DMA descriptor */
size_t size; /*!< The payload size in byte */
size_t recv_bytes; /*!< The received bytes of this transaction
will be reset when all data filled in the infinite transaction */
struct {
uint32_t infinite : 1; /*!< Whether this is an infinite transaction */
} flags;
} parlio_rx_transaction_t;
/**
* @brief Parlio RX unit resource management
*/
typedef struct parlio_rx_unit_t {
/* Unit general Resources */
int unit_id; /*!< unit id */
parlio_dir_t dir; /*!< unit direction */
parlio_group_t *group; /*!< group handle */
parlio_clock_source_t clk_src; /*!< clock source of the unit */
parlio_rx_unit_config_t cfg; /*!< basic configuration of the rx unit */
bool is_enabled; /*!< State flag that indicates whether the unit is enabled */
/* Mutex Lock */
SemaphoreHandle_t mutex; /*!< Mutex lock for concurrence safety,
* which should be acquired and released in a same function */
/* Power Management */
esp_pm_lock_handle_t pm_lock; /*!< power management lock */
#if CONFIG_PM_ENABLE
char pm_lock_name[PARLIO_PM_LOCK_NAME_LEN_MAX]; /*!< pm lock name */
#endif
/* Transaction Resources */
QueueHandle_t trans_que; /*!< Static transaction queue handle */
parlio_rx_transaction_t curr_trans; /*!< The current transaction */
SemaphoreHandle_t trans_sem; /*!< Binary semaphore to deliver transaction done signal,
* which can be acquired and released between different functions */
/* DMA Resources */
gdma_channel_handle_t dma_chan; /*!< DMA channel */
size_t max_recv_size; /*!< Maximum receive size for a normal transaction */
size_t desc_num; /*!< DMA descriptor number */
dma_descriptor_t *dma_descs; /*!< DMA descriptor array pointer */
dma_descriptor_t *curr_desc; /*!< The pointer of the current descriptor */
void *usr_recv_buf; /*!< The pointe to the user's receiving buffer */
/* Infinite transaction specific */
void *dma_buf; /*!< Additional internal DMA buffer only for infinite transactions */
/* Callback */
parlio_rx_event_callbacks_t cbs; /*!< The group of callback function pointers */
void *user_data; /*!< User data that supposed to be transported to the callback functions */
} parlio_rx_unit_t;
/**
* @brief Delimiter mode
*/
typedef enum {
PARLIO_RX_LEVEL_MODE, /*!< Delimit by the level of valid signal */
PARLIO_RX_PULSE_MODE, /*!< Delimit by the pulse of valid signal */
PARLIO_RX_SOFT_MODE, /*!< Delimit by the length of received data */
} parlio_rx_delimiter_mode_t;
/**
* @brief Pralio RX delimiter management
*/
typedef struct parlio_rx_delimiter_t {
parlio_rx_delimiter_mode_t mode; /*!< Delimiter mode */
bool under_using; /*!< Whether this delimiter is under using */
uint32_t valid_sig;
gpio_num_t valid_sig_line_id; /*!< The data line id for the valid signal */
parlio_sample_edge_t sample_edge; /*!< The sampling edge of the data */
parlio_bit_pack_order_t bit_pack_order; /*!< The order to pack the bit on the data line */
uint32_t eof_data_len; /*!< The length of the data to trigger the eof interrupt */
uint32_t timeout_ticks; /*!< The ticks of source clock that can trigger hardware timeout */
struct {
uint32_t active_level: 1; /*!< Which level indicates the validation of the transmitting data */
uint32_t start_bit_included: 1; /*!< Whether data bit is included in the start pulse */
uint32_t end_bit_included: 1; /*!< Whether data bit is included in the end pulse, only valid when `has_end_pulse` is true */
uint32_t has_end_pulse: 1; /*!< Whether there's an end pulse to terminate the transaction,
if no, the transaction will be terminated by user configured transcation length */
uint32_t pulse_invert: 1; /*!< Whether to invert the pulse */
} flags;
} parlio_rx_delimiter_t;
static IRAM_ATTR size_t s_parlio_mount_transaction_buffer(parlio_rx_unit_handle_t rx_unit, parlio_rx_transaction_t *trans)
{
dma_descriptor_t *p_desc = rx_unit->dma_descs;
/* Update the current transaction to the next one, and declare the delimiter is under using of the rx unit */
memcpy(&rx_unit->curr_trans, trans, sizeof(parlio_rx_transaction_t));
trans->delimiter->under_using = true;
uint32_t desc_num = trans->size / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
uint32_t remain_num = trans->size % DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
/* If there are still data remained, need one more descriptor */
desc_num += remain_num ? 1 : 0;
if (trans->flags.infinite && desc_num < 2) {
/* At least 2 descriptors needed */
desc_num = 2;
}
size_t mount_size = 0;
size_t offset = 0;
for (int i = 0; i < desc_num; i++) {
size_t rest_size = trans->size - offset;
if (rest_size >= 2 * DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) {
mount_size = trans->size / desc_num;
}
else if (rest_size <= DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) {
mount_size = (desc_num == 2) && (i == 0) ? rest_size / 2 : rest_size;
}
else {
mount_size = rest_size / 2;
}
p_desc[i].buffer = (void *)((uint8_t *)trans->payload + offset);
p_desc[i].dw0.size = mount_size;
p_desc[i].dw0.length = mount_size;
p_desc[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
// Link the descriptor
if (i > 0) {
p_desc[i - 1].next = &p_desc[i];
}
offset += mount_size;
}
/* For infinite transaction, link the descriptor as a ring */
p_desc[desc_num - 1].next = trans->flags.infinite ? &p_desc[0] : NULL;
/* Reset the current DMA node */
rx_unit->curr_desc = p_desc;
return offset;
}
static IRAM_ATTR void s_parlio_set_delimiter_config(parlio_rx_unit_handle_t rx_unit, parlio_rx_delimiter_handle_t deli)
{
parlio_hal_context_t *hal = &(rx_unit->group->hal);
/* Set the clock sampling edge and the bit order */
parlio_ll_rx_set_sample_clock_edge(hal->regs, deli->sample_edge);
parlio_ll_rx_set_bit_pack_order(hal->regs, deli->bit_pack_order);
/* Set receive mode according to the delimiter */
switch (deli->mode) {
case PARLIO_RX_LEVEL_MODE:
/* Select the level receive mode */
parlio_ll_rx_set_level_recv_mode(hal->regs, deli->flags.active_level);
parlio_ll_rx_treat_data_line_as_en(hal->regs, deli->valid_sig_line_id);
break;
case PARLIO_RX_PULSE_MODE:
/* Select the pulse receive mode */
parlio_ll_rx_set_pulse_recv_mode(hal->regs, deli->flags.start_bit_included,
deli->flags.end_bit_included,
!deli->flags.has_end_pulse,
deli->flags.pulse_invert);
parlio_ll_rx_treat_data_line_as_en(hal->regs, deli->valid_sig_line_id);
break;
default:
/* Select the soft receive mode */
parlio_ll_rx_set_soft_recv_mode(hal->regs);
break;
}
/* Set EOF configuration */
if (deli->eof_data_len) {
/* If EOF data length specified, set the eof condition to data length and set data bytes */
parlio_ll_rx_set_recv_bit_len(hal->regs, deli->eof_data_len * 8);
parlio_ll_rx_set_eof_condition(hal->regs, PARLIO_LL_RX_EOF_COND_RX_FULL);
} else {
/* If EOF data length not specified, set the eof condition to the external enable signal */
parlio_ll_rx_set_eof_condition(hal->regs, PARLIO_LL_RX_EOF_COND_EN_INACTIVE);
}
/* Set timeout configuration */
if (deli->timeout_ticks) {
parlio_ll_rx_enable_timeout(hal->regs, true);
parlio_ll_rx_set_timeout_thres(hal->regs, deli->timeout_ticks);
} else {
parlio_ll_rx_enable_timeout(hal->regs, false);
}
/* Set the validation signal if the validation signal number is set for level or pulse delimiter */
if (deli->mode != PARLIO_RX_SOFT_MODE) {
esp_rom_gpio_connect_in_signal(rx_unit->cfg.valid_gpio_num, deli->valid_sig, false);
/* Update the valid_sig_line_num */
parlio_ll_rx_treat_data_line_as_en(hal->regs, deli->valid_sig_line_id);
}
/* Update/synchronize the new configurations */
parlio_ll_rx_update_config(hal->regs);
}
static esp_err_t s_parlio_rx_unit_set_gpio(parlio_rx_unit_handle_t rx_unit, const parlio_rx_unit_config_t *config)
{
int group_id = rx_unit->group->group_id;
int unit_id = rx_unit->unit_id;
gpio_config_t gpio_conf = {
.intr_type = GPIO_INTR_DISABLE,
.pull_down_en = false,
.pull_up_en = true,
};
if (config->clk_src == PARLIO_CLK_SRC_EXTERNAL) {
ESP_RETURN_ON_FALSE(config->clk_gpio_num >= 0, ESP_ERR_INVALID_ARG, TAG, "clk_gpio_num must be set while the clock input from external");
/* Connect the clock in signal to the GPIO matrix if it is set */
if (!config->flags.io_no_init) {
gpio_conf.mode = config->flags.io_loop_back ? GPIO_MODE_INPUT_OUTPUT : GPIO_MODE_INPUT;
gpio_conf.pin_bit_mask = BIT64(config->clk_gpio_num);
ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config clk in GPIO failed");
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->clk_gpio_num], PIN_FUNC_GPIO);
}
esp_rom_gpio_connect_in_signal(config->clk_gpio_num,
parlio_periph_signals.groups[group_id].rx_units[unit_id].clk_in_sig, false);
}
else if (config->clk_gpio_num >= 0) {
#if SOC_PARLIO_RX_CLK_SUPPORT_OUTPUT
gpio_conf.mode = GPIO_MODE_OUTPUT;
gpio_conf.pin_bit_mask = BIT64(config->clk_gpio_num);
ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config clk in GPIO failed");
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->clk_gpio_num], PIN_FUNC_GPIO);
esp_rom_gpio_connect_out_signal(config->clk_gpio_num,
parlio_periph_signals.groups[group_id].rx_units[unit_id].clk_out_sig, false, false);
#else
ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "this target not support to output the clock");
#endif // SOC_PARLIO_RX_CLK_SUPPORT_OUTPUT
}
gpio_conf.mode = GPIO_MODE_INPUT;
if (config->valid_gpio_num >= 0) {
if (!config->flags.io_no_init) {
gpio_conf.pin_bit_mask = BIT64(config->valid_gpio_num);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->valid_gpio_num], PIN_FUNC_GPIO);
}
ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config data GPIO failed");
/* Not connect the signal here, the signal is lazy connected until the delimiter takes effect */
}
for (int i = 0; i < config->data_width; i++) {
/* Loop the data_gpio_nums to connect data and valid signals via GPIO matrix */
if (config->data_gpio_nums[i] >= 0) {
if (!config->flags.io_no_init) {
gpio_conf.pin_bit_mask = BIT64(config->data_gpio_nums[i]);
ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config data GPIO failed");
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->data_gpio_nums[i]], PIN_FUNC_GPIO);
}
esp_rom_gpio_connect_in_signal(config->data_gpio_nums[i],
parlio_periph_signals.groups[group_id].rx_units[unit_id].data_sigs[i], false);
} else {
ESP_LOGW(TAG, "data line %d not assigned", i);
}
}
return ESP_OK;
}
static IRAM_ATTR bool s_parlio_rx_default_trans_done_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
parlio_rx_unit_handle_t rx_unit = (parlio_rx_unit_handle_t )user_data;
BaseType_t high_task_woken = pdFALSE;
bool need_yield = false;
/* If configured on_receive_done callback and transaction just done */
if (rx_unit->cbs.on_receive_done) {
parlio_rx_event_data_t evt_data = {
.delimiter = rx_unit->curr_trans.delimiter,
.data = rx_unit->usr_recv_buf,
.size = rx_unit->curr_trans.size,
.recv_bytes = rx_unit->curr_trans.recv_bytes,
};
need_yield |= rx_unit->cbs.on_receive_done(rx_unit, &evt_data, rx_unit->user_data);
}
if (rx_unit->curr_trans.flags.infinite) {
/* For infinite transactions, reset the receiving bytes when the transaction is done */
rx_unit->curr_trans.recv_bytes = 0;
} else {
parlio_rx_transaction_t next_trans;
/* The current transaction finished, try to get the next transaction from the transaction queue */
if (xQueueReceiveFromISR(rx_unit->trans_que, &next_trans, &high_task_woken) == pdTRUE) {
if (rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_enable_clock(rx_unit->group->hal.regs, false);
}
/* If the delimiter of the next transaction is not same as the current one, need to re-config the hardware */
if (next_trans.delimiter != rx_unit->curr_trans.delimiter) {
s_parlio_set_delimiter_config(rx_unit, next_trans.delimiter);
}
/* Mount the new transaction buffer and start the new transaction */
s_parlio_mount_transaction_buffer(rx_unit, &rx_unit->curr_trans);
gdma_start(rx_unit->dma_chan, (intptr_t)rx_unit->dma_descs);
if (rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_start(rx_unit->group->hal.regs, true);
parlio_ll_rx_enable_clock(rx_unit->group->hal.regs, true);
}
} else {
/* No more transaction pending to receive, clear the current transaction */
rx_unit->curr_trans.delimiter->under_using = false;
memset(&rx_unit->curr_trans, 0, sizeof(parlio_rx_transaction_t));
need_yield |= high_task_woken == pdTRUE;
xSemaphoreGiveFromISR(rx_unit->trans_sem, &high_task_woken);
}
}
need_yield |= high_task_woken == pdTRUE;
return need_yield;
}
static IRAM_ATTR bool s_parlio_rx_default_desc_done_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
parlio_rx_unit_handle_t rx_unit = (parlio_rx_unit_handle_t )user_data;
bool need_yield = false;
/* Get the finished descriptor from the current descriptor */
dma_descriptor_t *finished_desc = rx_unit->curr_desc;
parlio_rx_event_data_t evt_data = {
.delimiter = rx_unit->curr_trans.delimiter,
.data = finished_desc->buffer,
.size = finished_desc->dw0.size,
.recv_bytes = finished_desc->dw0.length,
};
if (rx_unit->cbs.on_partial_receive) {
need_yield |= rx_unit->cbs.on_partial_receive(rx_unit, &evt_data, rx_unit->user_data);
}
/* For the infinite transaction, need to copy the data in DMA buffer to the user receiving buffer */
if (rx_unit->curr_trans.flags.infinite) {
memcpy(rx_unit->usr_recv_buf + rx_unit->curr_trans.recv_bytes, evt_data.data, evt_data.recv_bytes);
} else {
rx_unit->curr_trans.delimiter->under_using = false;
}
/* Update received bytes */
if (rx_unit->curr_trans.recv_bytes >= rx_unit->curr_trans.size) {
rx_unit->curr_trans.recv_bytes = 0;
}
rx_unit->curr_trans.recv_bytes += evt_data.recv_bytes;
/* Move to the next DMA descriptor */
rx_unit->curr_desc = rx_unit->curr_desc->next;
return need_yield;
}
static IRAM_ATTR bool s_parlio_rx_default_timeout_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
parlio_rx_unit_handle_t rx_unit = (parlio_rx_unit_handle_t )user_data;
bool need_yield = false;
parlio_rx_delimiter_handle_t deli = rx_unit->curr_trans.delimiter;
if (rx_unit->cbs.on_timeout && deli) {
parlio_rx_event_data_t evt_data = {
.delimiter = deli,
};
need_yield |= rx_unit->cbs.on_timeout(rx_unit, &evt_data, rx_unit->user_data);
}
return need_yield;
}
static esp_err_t s_parlio_rx_create_dma_descriptors(parlio_rx_unit_handle_t rx_unit, uint32_t max_recv_size)
{
ESP_RETURN_ON_FALSE(rx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid param");
uint32_t desc_num =max_recv_size / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED + 1;
/* set at least 2 descriptors */
if (desc_num < 2) {
desc_num = 4;
}
rx_unit->desc_num = desc_num;
/* Allocated and link the descriptor nodes */
rx_unit->dma_descs = (dma_descriptor_t *)heap_caps_calloc(desc_num, sizeof(dma_descriptor_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
ESP_RETURN_ON_FALSE(rx_unit->dma_descs, ESP_ERR_NO_MEM, TAG, "no memory for DMA descriptors");
rx_unit->max_recv_size = max_recv_size;
return ESP_OK;
}
static esp_err_t s_parlio_rx_unit_init_dma(parlio_rx_unit_handle_t rx_unit)
{
/* Allocate and connect the GDMA channel */
gdma_channel_alloc_config_t dma_chan_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
};
ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_chan_config, &rx_unit->dma_chan), TAG, "allocate RX DMA channel failed");
gdma_connect(rx_unit->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_PARLIO, 0));
/* Set GDMA strategy */
gdma_strategy_config_t gdma_strategy_conf = {
.auto_update_desc = true,
.owner_check = false, // no need to check owner
};
gdma_apply_strategy(rx_unit->dma_chan, &gdma_strategy_conf);
/* Register callbacks */
gdma_rx_event_callbacks_t cbs = {
.on_recv_eof = s_parlio_rx_default_trans_done_callback,
.on_recv_done = s_parlio_rx_default_desc_done_callback,
// TODO: not on_err_desc, wait for GDMA supports on_err_eof
// .on_err_eof = s_parlio_rx_default_timeout_callback,
.on_descr_err = s_parlio_rx_default_timeout_callback,
};
gdma_register_rx_event_callbacks(rx_unit->dma_chan, &cbs, rx_unit);
return ESP_OK;
}
static esp_err_t s_parlio_select_periph_clock(parlio_rx_unit_handle_t rx_unit, const parlio_rx_unit_config_t *config)
{
parlio_hal_context_t *hal = &rx_unit->group->hal;
parlio_clock_source_t clk_src = config->clk_src;
uint32_t periph_src_clk_hz = 0;
uint32_t div = 1;
/* if the source clock is input from the GPIO, then we're in the slave mode */
if (clk_src != PARLIO_CLK_SRC_EXTERNAL) {
ESP_RETURN_ON_FALSE(config->clk_freq_hz, ESP_ERR_INVALID_ARG, TAG, "clock frequency not set");
/* get the internal clock source frequency */
esp_clk_tree_src_get_freq_hz(clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &periph_src_clk_hz);
/* set clock division, round up */
div = (periph_src_clk_hz + config->clk_freq_hz - 1) / config->clk_freq_hz;
} else {
periph_src_clk_hz = config->clk_freq_hz;
}
#if CONFIG_PM_ENABLE
if (clk_src != PARLIO_CLK_SRC_EXTERNAL) {
/* XTAL and PLL clock source will be turned off in light sleep, so we need to create a NO_LIGHT_SLEEP lock */
sprintf(rx_unit->pm_lock_name, "parlio_rx_%d_%d", rx_unit->group->group_id, rx_unit->unit_id); // e.g. parlio_rx_0_0
esp_err_t ret = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, rx_unit->pm_lock_name, &rx_unit->pm_lock);
ESP_RETURN_ON_ERROR(ret, TAG, "create NO_LIGHT_SLEEP lock failed");
}
#endif
/* Set clock configuration */
parlio_ll_rx_set_clock_source(hal->regs, clk_src);
parlio_ll_rx_set_clock_div(hal->regs, div);
rx_unit->clk_src = clk_src;
rx_unit->cfg.clk_freq_hz = periph_src_clk_hz / div;
/* warning if precision lost due to division */
if ((clk_src != PARLIO_CLK_SRC_EXTERNAL) &&
(config->clk_freq_hz != rx_unit->cfg.clk_freq_hz )) {
ESP_LOGW(TAG, "precision loss, real output frequency: %"PRIu32, rx_unit->cfg.clk_freq_hz );
}
return ESP_OK;
}
static esp_err_t s_parlio_destroy_rx_unit(parlio_rx_unit_handle_t rx_unit)
{
/* Free the transaction queue */
if (rx_unit->trans_que) {
vQueueDeleteWithCaps(rx_unit->trans_que);
}
/* Free the mutex lock */
if (rx_unit->mutex) {
vSemaphoreDeleteWithCaps(rx_unit->mutex);
}
/* Free the transaction semaphore */
if (rx_unit->trans_sem) {
vSemaphoreDeleteWithCaps(rx_unit->trans_sem);
}
/* Free the power management lock */
if (rx_unit->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_delete(rx_unit->pm_lock), TAG, "delete pm lock failed");
}
/* Delete the GDMA channel */
if (rx_unit->dma_chan) {
ESP_RETURN_ON_ERROR(gdma_disconnect(rx_unit->dma_chan), TAG, "disconnect dma channel failed");
ESP_RETURN_ON_ERROR(gdma_del_channel(rx_unit->dma_chan), TAG, "delete dma channel failed");
}
/* Free the DMA descriptors */
if (rx_unit->dma_descs) {
free(rx_unit->dma_descs);
}
/* Free the internal DMA buffer */
if (rx_unit->dma_buf) {
free(rx_unit->dma_buf);
}
/* Unregister the RX unit from the PARLIO group */
if (rx_unit->group) {
parlio_unregister_unit_from_group((parlio_unit_base_handle_t)rx_unit);
}
/* Free the RX unit */
free(rx_unit);
return ESP_OK;
}
esp_err_t parlio_new_rx_unit(const parlio_rx_unit_config_t *config, parlio_rx_unit_handle_t *ret_unit)
{
#if CONFIG_PARLIO_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
ESP_RETURN_ON_FALSE(config && ret_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
/* Check the data width to be the the power of 2 */
ESP_RETURN_ON_FALSE(__builtin_popcount(config->data_width) == 1, ESP_ERR_INVALID_ARG, TAG,
"data line number should be the power of 2 without counting valid signal");
esp_err_t ret = ESP_OK;
parlio_rx_unit_handle_t unit = NULL;
/* Allocate unit memory */
unit = heap_caps_calloc(1, sizeof(parlio_rx_unit_t), PARLIO_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(unit, ESP_ERR_NO_MEM, err, TAG, "no memory for rx unit");
unit->dir = PARLIO_DIR_RX;
unit->is_enabled = false;
/* Initialize mutex lock */
unit->mutex = xSemaphoreCreateMutexWithCaps(PARLIO_MEM_ALLOC_CAPS);
/* Create transaction binary semaphore */
unit->trans_sem = xSemaphoreCreateBinaryWithCaps(PARLIO_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(unit->trans_sem, ESP_ERR_NO_MEM, err, TAG, "no memory for transaction semaphore");
xSemaphoreGive(unit->trans_sem);
/* Create the transaction queue. Choose `parlio_rx_transaction_t` as the queue element instead of its pointer
* Because the queue will do the copy to the element, no need to worry about the item in the queue will expire,
* so that we don't have to allocate additional memory to store the transaction. */
unit->trans_que = xQueueCreateWithCaps(config->trans_queue_depth, sizeof(parlio_rx_transaction_t), PARLIO_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(unit->trans_que, ESP_ERR_NO_MEM, err, TAG, "no memory for transaction queue");
ESP_GOTO_ON_ERROR(s_parlio_rx_create_dma_descriptors(unit, config->max_recv_size), err, TAG, "create dma descriptor failed");
/* Register and attach the rx unit to the group */
ESP_GOTO_ON_ERROR(parlio_register_unit_to_group((parlio_unit_base_handle_t)unit), err, TAG, "failed to register the rx unit to the group");
memcpy(&unit->cfg, config, sizeof(parlio_rx_unit_config_t));
/* If not using external clock source, the internal clock is always a free running clock */
if (config->clk_src != PARLIO_CLK_SRC_EXTERNAL) {
unit->cfg.flags.free_clk = 1;
}
parlio_group_t *group = unit->group;
parlio_hal_context_t *hal = &group->hal;
/* Initialize GPIO */
ESP_GOTO_ON_ERROR(s_parlio_rx_unit_set_gpio(unit, config), err, TAG, "failed to set GPIO");
/* Install DMA service */
ESP_GOTO_ON_ERROR(s_parlio_rx_unit_init_dma(unit), err, TAG, "install rx DMA failed");
/* Reset RX module */
parlio_ll_rx_reset_clock(hal->regs);
parlio_ll_rx_reset_fifo(hal->regs);
parlio_ll_rx_enable_clock(hal->regs, false);
parlio_ll_rx_start(hal->regs, false);
/* parlio_ll_clock_source_t and parlio_clock_source_t are binary compatible if the clock source is from internal */
ESP_GOTO_ON_ERROR(s_parlio_select_periph_clock(unit, config), err, TAG, "set clock source failed");
/* Set the data width */
parlio_ll_rx_set_bus_width(hal->regs, config->data_width);
#if SOC_PARLIO_RX_CLK_SUPPORT_GATING
parlio_ll_rx_enable_clock_gating(hal->regs, config->flags.clk_gate_en);
#endif // SOC_PARLIO_RX_CLK_SUPPORT_GATING
/* return RX unit handle */
*ret_unit = unit;
ESP_LOGD(TAG, "new rx unit(%d,%d) at %p, trans_queue_depth=%zu",
group->group_id, unit->unit_id, (void *)unit, unit->cfg.trans_queue_depth);
return ESP_OK;
err:
if (unit) {
s_parlio_destroy_rx_unit(unit);
}
return ret;
}
esp_err_t parlio_del_rx_unit(parlio_rx_unit_handle_t rx_unit)
{
ESP_RETURN_ON_FALSE(rx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(!rx_unit->is_enabled, ESP_ERR_INVALID_STATE, TAG, "the unit has not disabled");
ESP_LOGD(TAG, "del rx unit (%d, %d)", rx_unit->group->group_id, rx_unit->unit_id);
return s_parlio_destroy_rx_unit(rx_unit);
}
esp_err_t parlio_rx_unit_enable(parlio_rx_unit_handle_t rx_unit, bool reset_queue)
{
ESP_RETURN_ON_FALSE(rx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(!rx_unit->is_enabled, ESP_ERR_INVALID_STATE, TAG, "the unit has enabled or running");
rx_unit->is_enabled = true;
parlio_hal_context_t *hal = &rx_unit->group->hal;
xSemaphoreTake(rx_unit->mutex, portMAX_DELAY);
/* Acquire the power management lock incase */
if (rx_unit->pm_lock) {
esp_pm_lock_acquire(rx_unit->pm_lock);
}
/* For non-free running clock, the unit can't stop once enabled, otherwise the data alignment will go wrong */
if (!rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_reset_fifo(hal->regs);
parlio_ll_rx_start(hal->regs, true);
parlio_ll_rx_enable_clock(hal->regs, true);
}
/* Check if we need to start a pending transaction */
parlio_rx_transaction_t trans;
if (reset_queue) {
xQueueReset(rx_unit->trans_que);
xSemaphoreGive(rx_unit->trans_sem);
} else if (xQueueReceive(rx_unit->trans_que, &trans, 0) == pdTRUE) {
xSemaphoreTake(rx_unit->trans_sem, 0);
if (rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_enable_clock(hal->regs, false);
}
s_parlio_set_delimiter_config(rx_unit, trans.delimiter);
s_parlio_mount_transaction_buffer(rx_unit, &rx_unit->curr_trans);
gdma_start(rx_unit->dma_chan, (intptr_t)rx_unit->curr_desc);
if (rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_start(hal->regs, true);
parlio_ll_rx_enable_clock(hal->regs, true);
}
}
xSemaphoreGive(rx_unit->mutex);
return ESP_OK;
}
esp_err_t parlio_rx_unit_disable(parlio_rx_unit_handle_t rx_unit)
{
ESP_RETURN_ON_FALSE(rx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(rx_unit->is_enabled, ESP_ERR_INVALID_STATE, TAG, "the unit has disabled");
rx_unit->is_enabled = false;
/* stop the RX engine */
parlio_hal_context_t *hal = &rx_unit->group->hal;
xSemaphoreTake(rx_unit->mutex, portMAX_DELAY);
gdma_stop(rx_unit->dma_chan);
parlio_ll_rx_enable_clock(hal->regs, false);
parlio_ll_rx_start(hal->regs, false);
if (rx_unit->curr_trans.delimiter) {
rx_unit->curr_trans.delimiter->under_using = false;
}
/* For continuous receiving, free the temporary buffer and stop the DMA */
if (rx_unit->dma_buf) {
free(rx_unit->dma_buf);
rx_unit->dma_buf = NULL;
}
/* release power management lock */
if (rx_unit->pm_lock) {
esp_pm_lock_release(rx_unit->pm_lock);
}
/* Erase the current transaction */
memset(&rx_unit->curr_trans, 0, sizeof(parlio_rx_transaction_t));
xSemaphoreGive(rx_unit->mutex);
return ESP_OK;
}
esp_err_t parlio_new_rx_level_delimiter(const parlio_rx_level_delimiter_config_t *config,
parlio_rx_delimiter_handle_t *ret_delimiter)
{
ESP_RETURN_ON_FALSE(config && ret_delimiter, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
/* Validation signal line must specified for level delimiter */
ESP_RETURN_ON_FALSE(config->valid_sig_line_id < PARLIO_RX_UNIT_MAX_DATA_WIDTH,
ESP_ERR_INVALID_ARG, TAG, "no valid signal line specified");
parlio_rx_delimiter_handle_t delimiter = NULL;
/* Allocate memory for the delimiter */
delimiter = (parlio_rx_delimiter_handle_t)heap_caps_calloc(1, sizeof(parlio_rx_delimiter_t), PARLIO_MEM_ALLOC_CAPS);
ESP_RETURN_ON_FALSE(delimiter, ESP_ERR_NO_MEM, TAG, "no memory for rx delimiter");
/* Assign configuration for the level delimiter */
delimiter->mode = PARLIO_RX_LEVEL_MODE;
delimiter->valid_sig_line_id = config->valid_sig_line_id;
delimiter->sample_edge = config->sample_edge;
delimiter->bit_pack_order = config->bit_pack_order;
delimiter->eof_data_len = config->eof_data_len;
delimiter->timeout_ticks = config->timeout_ticks;
delimiter->flags.active_level = config->flags.active_level;
*ret_delimiter = delimiter;
return ESP_OK;
}
esp_err_t parlio_new_rx_pulse_delimiter(const parlio_rx_pulse_delimiter_config_t *config,
parlio_rx_delimiter_handle_t *ret_delimiter)
{
ESP_RETURN_ON_FALSE(config && ret_delimiter, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
/* Validation signal line must specified for pulse delimiter */
ESP_RETURN_ON_FALSE(config->valid_sig_line_id < PARLIO_RX_UNIT_MAX_DATA_WIDTH,
ESP_ERR_INVALID_ARG, TAG, "no valid signal line specified");
/* Guarantee there is an end symbol, end by length or pulse */
ESP_RETURN_ON_FALSE(config->eof_data_len || config->flags.has_end_pulse,
ESP_ERR_INVALID_ARG, TAG, "Either eof_data_len or has_end_pulse should be set");
/* If end by length, the maximum length is limited */
ESP_RETURN_ON_FALSE(config->eof_data_len <= PARLIO_LL_RX_MAX_BYTES_PER_FRAME, ESP_ERR_INVALID_ARG,
TAG, "EOF data length exceed the max value %d", PARLIO_LL_RX_MAX_BYTES_PER_FRAME);
parlio_rx_delimiter_handle_t delimiter = NULL;
/* Allocate memory for the delimiter */
delimiter = (parlio_rx_delimiter_handle_t)heap_caps_calloc(1, sizeof(parlio_rx_delimiter_t), PARLIO_MEM_ALLOC_CAPS);
ESP_RETURN_ON_FALSE(delimiter, ESP_ERR_NO_MEM, TAG, "no memory for rx delimiter");
/* Assign configuration for the pulse delimiter */
delimiter->mode = PARLIO_RX_PULSE_MODE;
delimiter->valid_sig_line_id = config->valid_sig_line_id;
delimiter->sample_edge = config->sample_edge;
delimiter->bit_pack_order = config->bit_pack_order;
delimiter->eof_data_len = config->eof_data_len;
delimiter->timeout_ticks = config->timeout_ticks;
delimiter->flags.start_bit_included = config->flags.start_bit_included;
delimiter->flags.has_end_pulse = config->flags.has_end_pulse;
delimiter->flags.end_bit_included = config->flags.end_bit_included;
delimiter->flags.pulse_invert = config->flags.pulse_invert;
*ret_delimiter = delimiter;
return ESP_OK;
}
esp_err_t parlio_new_rx_soft_delimiter(const parlio_rx_soft_delimiter_config_t *config,
parlio_rx_delimiter_handle_t *ret_delimiter)
{
ESP_RETURN_ON_FALSE(config && ret_delimiter, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
/* The soft delimiter can only end by length, EOF length should be within range (0, PARLIO_LL_RX_MAX_BYTES_PER_FRAME] */
ESP_RETURN_ON_FALSE(config->eof_data_len > 0 && config->eof_data_len <= PARLIO_LL_RX_MAX_BYTES_PER_FRAME, ESP_ERR_INVALID_ARG,
TAG, "EOF data length is 0 or exceed the max value %d", PARLIO_LL_RX_MAX_BYTES_PER_FRAME);
parlio_rx_delimiter_handle_t delimiter = NULL;
/* Allocate memory for the delimiter */
delimiter = (parlio_rx_delimiter_handle_t)heap_caps_calloc(1, sizeof(parlio_rx_delimiter_t), PARLIO_MEM_ALLOC_CAPS);
ESP_RETURN_ON_FALSE(delimiter, ESP_ERR_NO_MEM, TAG, "no memory for rx delimiter");
/* Assign configuration for the soft delimiter */
delimiter->mode = PARLIO_RX_SOFT_MODE;
delimiter->under_using = false;
delimiter->sample_edge = config->sample_edge;
delimiter->bit_pack_order = config->bit_pack_order;
delimiter->eof_data_len = config->eof_data_len;
delimiter->timeout_ticks = config->timeout_ticks;
*ret_delimiter = delimiter;
return ESP_OK;
}
esp_err_t parlio_rx_soft_delimiter_start_stop(parlio_rx_unit_handle_t rx_unit, parlio_rx_delimiter_handle_t delimiter, bool start_stop)
{
ESP_RETURN_ON_FALSE(rx_unit && delimiter, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(delimiter->mode == PARLIO_RX_SOFT_MODE, ESP_ERR_INVALID_ARG, TAG, "The delimiter is not soft delimiter");
ESP_RETURN_ON_FALSE(rx_unit->is_enabled, ESP_ERR_INVALID_STATE, TAG, "the unit has not enabled");
xSemaphoreTake(rx_unit->mutex, portMAX_DELAY);
parlio_hal_context_t *hal = &(rx_unit->group->hal);
parlio_ll_rx_start_soft_recv(hal->regs, start_stop);
xSemaphoreGive(rx_unit->mutex);
return ESP_OK;
}
esp_err_t parlio_del_rx_delimiter(parlio_rx_delimiter_handle_t delimiter)
{
ESP_RETURN_ON_FALSE(delimiter, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(!delimiter->under_using, ESP_ERR_INVALID_STATE, TAG, "the delimiter is under using");
free(delimiter);
return ESP_OK;
}
static esp_err_t s_parlio_rx_unit_do_transaction(parlio_rx_unit_handle_t rx_unit, parlio_rx_transaction_t *trans)
{
if (!rx_unit->curr_trans.delimiter) {
xSemaphoreTake(rx_unit->trans_sem, 0);
if (rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_enable_clock(rx_unit->group->hal.regs, false);
}
if (trans->delimiter != rx_unit->curr_trans.delimiter) {
s_parlio_set_delimiter_config(rx_unit, trans->delimiter);
}
s_parlio_mount_transaction_buffer(rx_unit, trans);
gdma_start(rx_unit->dma_chan, (intptr_t)rx_unit->curr_desc);
if (rx_unit->cfg.flags.free_clk) {
parlio_ll_rx_start(rx_unit->group->hal.regs, true);
parlio_ll_rx_enable_clock(rx_unit->group->hal.regs, true);
}
} else { // Otherwise send to the queue
/* Send the transaction to the queue */
ESP_RETURN_ON_FALSE(xQueueSend(rx_unit->trans_que, trans, 0) == pdTRUE,
ESP_ERR_INVALID_STATE, TAG, "transaction queue is full, failed to send transaction to the queue");
}
return ESP_OK;
}
esp_err_t parlio_rx_unit_receive(parlio_rx_unit_handle_t rx_unit,
void *payload,
size_t payload_size,
const parlio_receive_config_t* recv_cfg)
{
ESP_RETURN_ON_FALSE(rx_unit && payload && recv_cfg, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(recv_cfg->delimiter, ESP_ERR_INVALID_ARG, TAG, "no delimiter specified");
ESP_RETURN_ON_FALSE(payload_size <= rx_unit->max_recv_size, ESP_ERR_INVALID_ARG, TAG, "trans length too large");
#if CONFIG_GDMA_ISR_IRAM_SAFE
ESP_RETURN_ON_FALSE(esp_ptr_internal(payload), ESP_ERR_INVALID_ARG, TAG, "payload not in internal RAM");
#endif
if (recv_cfg->delimiter->eof_data_len) {
ESP_RETURN_ON_FALSE(payload_size >= recv_cfg->delimiter->eof_data_len, ESP_ERR_INVALID_ARG,
TAG, "payload size should be greater than eof_data_len");
}
if (recv_cfg->delimiter->mode != PARLIO_RX_SOFT_MODE) {
ESP_RETURN_ON_FALSE(rx_unit->cfg.valid_gpio_num >= 0, ESP_ERR_INVALID_ARG, TAG, "The validate gpio of this unit is not set");
/* Check if the valid_sig_line_id is equal or greater than data width, otherwise valid_sig_line_id is conflict with data signal.
* Specifically, level or pulse delimiter requires one data line as valid signal, so these two delimiters can't support PARLIO_RX_UNIT_MAX_DATA_WIDTH */
ESP_RETURN_ON_FALSE(recv_cfg->delimiter->valid_sig_line_id >= rx_unit->cfg.data_width,
ESP_ERR_INVALID_ARG, TAG, "the valid_sig_line_id of this delimiter is conflict with rx unit data width");
/* Assign the signal here to ensure iram safe */
recv_cfg->delimiter->valid_sig = parlio_periph_signals.groups[rx_unit->group->group_id].
rx_units[rx_unit->unit_id].
data_sigs[recv_cfg->delimiter->valid_sig_line_id];
}
void *p_buffer = payload;
/* Create the internal DMA buffer for the infinite transaction if indirect_mount is set */
if (recv_cfg->flags.is_infinite && recv_cfg->flags.indirect_mount) {
/* Allocate the internal DMA buffer to store the data temporary */
rx_unit->dma_buf = heap_caps_calloc(1, payload_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
ESP_RETURN_ON_FALSE(rx_unit->dma_buf, ESP_ERR_NO_MEM, TAG, "No memory for the internal DMA buffer");
/* Use the internal DMA buffer so that the user buffer can always be available */
p_buffer = rx_unit->dma_buf;
}
/* Create the transaction */
parlio_rx_transaction_t transaction = {
.delimiter = recv_cfg->delimiter,
.payload = p_buffer,
.size = payload_size,
.recv_bytes = 0,
.flags.infinite = recv_cfg->flags.is_infinite,
};
rx_unit->usr_recv_buf = payload;
xSemaphoreTake(rx_unit->mutex, portMAX_DELAY);
esp_err_t ret = s_parlio_rx_unit_do_transaction(rx_unit, &transaction);
xSemaphoreGive(rx_unit->mutex);
return ret;
}
esp_err_t parlio_rx_unit_wait_all_done(parlio_rx_unit_handle_t rx_unit, int timeout_ms)
{
ESP_RETURN_ON_FALSE(rx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
xSemaphoreTake(rx_unit->mutex, portMAX_DELAY);
TickType_t ticks = timeout_ms < 0 ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms);
/* Waiting for the all transaction done signal */
if (xSemaphoreTake(rx_unit->trans_sem, ticks) == pdFALSE) {
xSemaphoreGive(rx_unit->mutex);
return ESP_ERR_TIMEOUT;
}
/* Put back the signal */
xSemaphoreGive(rx_unit->trans_sem);
xSemaphoreGive(rx_unit->mutex);
return ESP_OK;
}
esp_err_t parlio_rx_unit_register_event_callbacks(parlio_rx_unit_handle_t rx_unit, const parlio_rx_event_callbacks_t *cbs, void *user_data)
{
ESP_RETURN_ON_FALSE(rx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(!rx_unit->is_enabled, ESP_ERR_INVALID_STATE, TAG, "the unit has enabled or running");
xSemaphoreTake(rx_unit->mutex, portMAX_DELAY);
memcpy(&rx_unit->cbs, cbs, sizeof(parlio_rx_event_callbacks_t));
rx_unit->user_data = user_data;
xSemaphoreGive(rx_unit->mutex);
return ESP_OK;
}