esp-idf/components/esp_psram/device/esp_psram_impl_ap_hex.c

404 lines
15 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_private/periph_ctrl.h"
#include "../esp_psram_impl.h"
#include "rom/opi_flash.h"
#include "hal/psram_ctrlr_ll.h"
// Reset and Clock Control registers are mixing with other peripherals, so we need to use a critical section
#define PSRAM_RCC_ATOMIC() PERIPH_RCC_ATOMIC()
#define AP_HEX_PSRAM_SYNC_READ 0x0000
#define AP_HEX_PSRAM_SYNC_WRITE 0x8080
#define AP_HEX_PSRAM_BURST_READ 0x2020
#define AP_HEX_PSRAM_BURST_WRITE 0xA0A0
#define AP_HEX_PSRAM_REG_READ 0x4040
#define AP_HEX_PSRAM_REG_WRITE 0xC0C0
#define AP_HEX_PSRAM_RD_CMD_BITLEN 16
#define AP_HEX_PSRAM_WR_CMD_BITLEN 16
#define AP_HEX_PSRAM_ADDR_BITLEN 32
#define AP_HEX_PSRAM_RD_DUMMY_BITLEN (2*(10-1))
#define AP_HEX_PSRAM_WR_DUMMY_BITLEN (2*(5-1))
#define AP_HEX_PSRAM_VENDOR_ID 0xD
#define AP_HEX_PSRAM_CS_SETUP_TIME 4
#define AP_HEX_PSRAM_CS_HOLD_TIME 4
#define AP_HEX_PSRAM_CS_ECC_HOLD_TIME 4
#define AP_HEX_PSRAM_CS_HOLD_DELAY 3
typedef struct {
union {
struct {
uint8_t drive_str: 2;
uint8_t read_latency: 3;
uint8_t lt: 1;
uint8_t rsvd6: 1;
uint8_t tso: 1;
};
uint8_t val;
} mr0;
union {
struct {
uint8_t vendor_id: 5;
uint8_t rsvd0_2: 2;
uint8_t ulp: 1;
};
uint8_t val;
} mr1;
union {
struct {
uint8_t density: 3;
uint8_t dev_id: 2;
uint8_t kgd: 3;
};
uint8_t val;
} mr2;
union {
struct {
uint8_t rsvd3_7: 4;
uint8_t srf: 2;
uint8_t rsvd0: 1;
uint8_t rbx_en: 1;
};
uint8_t val;
} mr3;
union {
struct {
uint8_t pasr: 3;
uint8_t rf: 2;
uint8_t wr_latency: 3;
};
uint8_t val;
} mr4;
union {
struct {
uint8_t bl: 2;
uint8_t bt: 1;
uint8_t rbx: 1;
uint8_t rsvd5: 2;
uint8_t x16: 1;
uint8_t rsvd7: 1;
};
uint8_t val;
} mr8;
} hex_psram_mode_reg_t;
static const char* TAG = "hex_psram";
static uint32_t s_psram_size; //this stands for physical psram size in bytes
/**
* Common psram transaction
*/
static void s_psram_common_transaction(uint32_t mspi_id,
uint32_t cmd, uint32_t cmd_bitlen,
uint32_t addr, uint32_t addr_bitlen,
uint32_t dummy_bits,
uint8_t* mosi_data, uint32_t mosi_bitlen,
uint8_t* miso_data, uint32_t miso_bitlen,
bool is_write_erase_operation)
{
psram_ctrlr_ll_common_transaction(mspi_id, cmd, cmd_bitlen, addr, addr_bitlen, dummy_bits,
mosi_data, mosi_bitlen, miso_data, miso_bitlen,
is_write_erase_operation);
}
/**
* Initialise mode registers of the PSRAM
*/
static void s_init_psram_mode_reg(int spi_num, hex_psram_mode_reg_t *mode_reg_config)
{
int cmd_len = 16;
uint32_t addr = 0x0;
int addr_bit_len = 32;
int dummy = AP_HEX_PSRAM_RD_DUMMY_BITLEN;
hex_psram_mode_reg_t mode_reg = {0};
int data_bit_len = 16;
//read
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_READ, cmd_len,
addr, addr_bit_len,
dummy,
NULL, 0,
&mode_reg.mr0.val, data_bit_len,
false);
//modify
mode_reg.mr0.lt = mode_reg_config->mr0.lt;
mode_reg.mr0.read_latency = mode_reg_config->mr0.read_latency;
mode_reg.mr0.drive_str = mode_reg_config->mr0.drive_str;
//write
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_WRITE, cmd_len,
addr, addr_bit_len,
0,
&mode_reg.mr0.val, 16,
NULL, 0,
false);
addr = 0x8;
data_bit_len = 8;
//read
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_READ, cmd_len,
addr, addr_bit_len,
dummy,
NULL, 0,
&mode_reg.mr8.val, data_bit_len,
false);
//modify
mode_reg.mr8.bt = mode_reg_config->mr8.bt;
mode_reg.mr8.bl = mode_reg_config->mr8.bl;
mode_reg.mr8.rbx = mode_reg_config->mr8.rbx;
mode_reg.mr8.x16 = mode_reg_config->mr8.x16;
//write
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_WRITE, cmd_len,
addr, addr_bit_len,
0,
&mode_reg.mr8.val, 16,
NULL, 0,
false);
}
static void s_get_psram_mode_reg(int spi_num, hex_psram_mode_reg_t *out_reg)
{
int cmd_len = 16;
int addr_bit_len = 32;
int dummy = AP_HEX_PSRAM_RD_DUMMY_BITLEN;
int data_bit_len = 16;
//Read MR0~1 register
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_READ, cmd_len,
0x0, addr_bit_len,
dummy,
NULL, 0,
&out_reg->mr0.val, data_bit_len,
false);
//Read MR2~3 register
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_READ, cmd_len,
0x2, addr_bit_len,
dummy,
NULL, 0,
&out_reg->mr2.val, data_bit_len,
false);
data_bit_len = 8;
//Read MR4 register
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_READ, cmd_len,
0x4, addr_bit_len,
dummy,
NULL, 0,
&out_reg->mr4.val, data_bit_len,
false);
//Read MR8 register
s_psram_common_transaction(spi_num,
AP_HEX_PSRAM_REG_READ, cmd_len,
0x8, addr_bit_len,
dummy,
NULL, 0,
&out_reg->mr8.val, data_bit_len,
false);
}
static void s_print_psram_info(hex_psram_mode_reg_t *reg_val)
{
ESP_EARLY_LOGI(TAG, "vendor id : 0x%02x (%s)", reg_val->mr1.vendor_id, reg_val->mr1.vendor_id == 0x0d ? "AP" : "UNKNOWN");
ESP_EARLY_LOGI(TAG, "Latency : 0x%02x (%s)", reg_val->mr0.lt, reg_val->mr0.lt == 1 ? "Fixed" : "Variable");
ESP_EARLY_LOGI(TAG, "DriveStr. : 0x%02x (%d Ohm)", reg_val->mr0.drive_str, reg_val->mr0.drive_str < 2 ? 25 * (reg_val->mr0.drive_str + 1) : 100 * (reg_val->mr0.drive_str - 1));
ESP_EARLY_LOGI(TAG, "dev id : 0x%02x (generation %d)", reg_val->mr2.dev_id, reg_val->mr2.dev_id + 1);
ESP_EARLY_LOGI(TAG, "density : 0x%02x (%d Mbit)", reg_val->mr2.density, reg_val->mr2.density == 0x1 ? 32 :
reg_val->mr2.density == 0X3 ? 64 :
reg_val->mr2.density == 0x5 ? 128 :
reg_val->mr2.density == 0x7 ? 256 : 0);
ESP_EARLY_LOGI(TAG, "good-die : 0x%02x (%s)", reg_val->mr2.kgd, reg_val->mr2.kgd == 6 ? "Pass" : "Fail");
ESP_EARLY_LOGI(TAG, "SRF : 0x%02x (%s Refresh)", reg_val->mr3.srf, reg_val->mr3.srf == 0x1 ? "Fast" : "Slow");
ESP_EARLY_LOGI(TAG, "BurstType : 0x%02x (%s Wrap)", reg_val->mr8.bt, reg_val->mr8.bt == 1 && reg_val->mr8.bl != 3 ? "Hybrid" : "");
ESP_EARLY_LOGI(TAG, "BurstLen : 0x%02x (%d Byte)", reg_val->mr8.bl, reg_val->mr8.bl == 0x00 ? 16 :
reg_val->mr8.bl == 0x01 ? 32 :
reg_val->mr8.bl == 0x10 ? 64 : 2048);
ESP_EARLY_LOGI(TAG, "BitMode : 0x%02x (%s Mode)", reg_val->mr8.x16, reg_val->mr8.x16 == 1 ? "X16" : "X8");
ESP_EARLY_LOGI(TAG, "Readlatency : 0x%02x (%d cycles@%s)", reg_val->mr0.read_latency, reg_val->mr0.read_latency * 2 + 6,
reg_val->mr0.lt == 1 ? "Fixed" : "Variable");
ESP_EARLY_LOGI(TAG, "DriveStrength: 0x%02x (1/%d)", reg_val->mr0.drive_str, reg_val->mr0.drive_str == 0x00 ? 1 :
reg_val->mr0.drive_str == 0x01 ? 2 :
reg_val->mr0.drive_str == 0x02 ? 4 : 8);
}
static void s_config_mspi_for_psram(void)
{
//Config Write CMD phase for SPI0 to access PSRAM
psram_ctrlr_ll_set_wr_cmd(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_WR_CMD_BITLEN, AP_HEX_PSRAM_BURST_WRITE);
//Config Read CMD phase for SPI0 to access PSRAM
psram_ctrlr_ll_set_rd_cmd(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_RD_CMD_BITLEN, AP_HEX_PSRAM_BURST_READ);
//Config ADDR phase
psram_ctrlr_ll_set_addr_bitlen(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_ADDR_BITLEN);
psram_ctrlr_ll_enable_4byte_addr(PSRAM_CTRLR_LL_MSPI_ID_2, true);
//Config RD/WR Dummy phase
psram_ctrlr_ll_set_wr_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_WR_DUMMY_BITLEN);
psram_ctrlr_ll_set_rd_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_RD_DUMMY_BITLEN);
psram_ctrlr_ll_enable_variable_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_wr_dummy_level_control(PSRAM_CTRLR_LL_MSPI_ID_2, true);
//DDR
psram_ctrlr_ll_enable_ddr_wr_data_swap(PSRAM_CTRLR_LL_MSPI_ID_2, false);
psram_ctrlr_ll_enable_ddr_rd_data_swap(PSRAM_CTRLR_LL_MSPI_ID_2, false);
psram_ctrlr_ll_enable_ddr_mode(PSRAM_CTRLR_LL_MSPI_ID_2, true);
//Line mode
psram_ctrlr_ll_enable_oct_line_mode(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_hex_data_line_mode(PSRAM_CTRLR_LL_MSPI_ID_2, true);
#if CONFIG_SPIRAM_USE_8LINE_MODE
psram_ctrlr_ll_enable_hex_data_line_mode(PSRAM_CTRLR_LL_MSPI_ID_2, false);
#endif
//AXI
psram_ctrlr_ll_enable_axi_access(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_wr_splice(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_rd_splice(PSRAM_CTRLR_LL_MSPI_ID_2, true);
}
static void s_set_psram_cs_timing(void)
{
psram_ctrlr_ll_set_cs_setup(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_SETUP_TIME);
psram_ctrlr_ll_set_cs_hold(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_HOLD_TIME);
psram_ctrlr_ll_set_cs_hold_delay(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_HOLD_DELAY);
#if CONFIG_SPIRAM_ECC_ENABLE
psram_ctrlr_ll_set_cs_hold_ecc(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_ECC_HOLD_TIME);
#endif
}
#if CONFIG_SPIRAM_ECC_ENABLE
static void s_mspi_ecc_show_info(void)
{
for (int i = 0; i < PSRAM_CTRLR_LL_PMS_REGION_NUMS; i++) {
ESP_EARLY_LOGV(TAG, "region[%d] addr: 0x%08x", i, psram_ctrlr_ll_get_pms_region_start_addr(PSRAM_CTRLR_LL_MSPI_ID_2, i));
ESP_EARLY_LOGV(TAG, "region[%d] size: 0x%08x", i, psram_ctrlr_ll_get_pms_region_size(PSRAM_CTRLR_LL_MSPI_ID_2, i));
}
uint32_t page_size = psram_ctrlr_ll_get_page_size(PSRAM_CTRLR_LL_MSPI_ID_2);
ESP_EARLY_LOGV(TAG, "ECC page size: %d", page_size);
}
/**
* Enable error correcting code feature
*
* Can add an input parameter for selecting ECC mode if needed
*/
static void s_configure_psram_ecc(void)
{
psram_ctrlr_ll_enable_16to18_ecc(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_skip_page_corner(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_split_trans(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_set_page_size(PSRAM_CTRLR_LL_MSPI_ID_2, 2048);
psram_ctrlr_ll_enable_ecc_addr_conversion(PSRAM_CTRLR_LL_MSPI_ID_2, 2048);
/**
* Enable ECC region 0 (ACE0)
* Default: ACE0 range: 0 ~ 256MB
* Current Hex PSRAM is 8MB, ACE0 is enough
*/
psram_ctrlr_ll_enable_pms_region_ecc(PSRAM_CTRLR_LL_MSPI_ID_2, 0, true);
ESP_EARLY_LOGI(TAG, "ECC is enabled");
s_mspi_ecc_show_info();
}
#endif //#if CONFIG_SPIRAM_ECC_ENABLE
esp_err_t esp_psram_impl_enable(void)
{
PSRAM_RCC_ATOMIC() {
psram_ctrlr_ll_enable_module_clock(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_reset_module_clock(PSRAM_CTRLR_LL_MSPI_ID_2);
psram_ctrlr_ll_select_clk_source(PSRAM_CTRLR_LL_MSPI_ID_2, PSRAM_CLK_SRC_XTAL);
}
s_set_psram_cs_timing();
#if CONFIG_SPIRAM_ECC_ENABLE
s_configure_psram_ecc();
#endif
//enter MSPI slow mode to init PSRAM device registers
psram_ctrlr_ll_set_bus_clock(PSRAM_CTRLR_LL_MSPI_ID_2, 2);
psram_ctrlr_ll_enable_dll(PSRAM_CTRLR_LL_MSPI_ID_2, true);
psram_ctrlr_ll_enable_dll(PSRAM_CTRLR_LL_MSPI_ID_3, true);
static hex_psram_mode_reg_t mode_reg = {};
mode_reg.mr0.lt = 1;
mode_reg.mr0.read_latency = 2;
mode_reg.mr0.drive_str = 0;
mode_reg.mr8.bl = 3;
mode_reg.mr8.bt = 0;
mode_reg.mr8.rbx = 1;
mode_reg.mr8.x16 = 1;
#if CONFIG_SPIRAM_USE_8LINE_MODE
mode_reg.mr8.x16 = 0;
#endif
s_init_psram_mode_reg(PSRAM_CTRLR_LL_MSPI_ID_3, &mode_reg);
//Print PSRAM info
s_get_psram_mode_reg(PSRAM_CTRLR_LL_MSPI_ID_3, &mode_reg);
if (mode_reg.mr1.vendor_id != AP_HEX_PSRAM_VENDOR_ID) {
ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x, PSRAM chip not found or not supported, or wrong PSRAM line mode", mode_reg.mr1.vendor_id);
return ESP_ERR_NOT_SUPPORTED;
}
s_print_psram_info(&mode_reg);
s_psram_size = mode_reg.mr2.density == 0x1 ? PSRAM_SIZE_4MB :
mode_reg.mr2.density == 0X3 ? PSRAM_SIZE_8MB :
mode_reg.mr2.density == 0x5 ? PSRAM_SIZE_16MB :
mode_reg.mr2.density == 0x7 ? PSRAM_SIZE_32MB :
mode_reg.mr2.density == 0x6 ? PSRAM_SIZE_64MB : 0;
s_config_mspi_for_psram();
return ESP_OK;
}
uint8_t esp_psram_impl_get_cs_io(void)
{
ESP_EARLY_LOGI(TAG, "psram CS IO is dedicated");
return -1;
}
esp_err_t esp_psram_impl_get_physical_size(uint32_t *out_size_bytes)
{
if (!out_size_bytes) {
return ESP_ERR_INVALID_ARG;
}
*out_size_bytes = s_psram_size;
return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE);
}
/**
* This function is to get the available physical psram size in bytes.
* If ECC is enabled, available PSRAM size will be 7/8 times its physical size.
*/
esp_err_t esp_psram_impl_get_available_size(uint32_t *out_size_bytes)
{
if (!out_size_bytes) {
return ESP_ERR_INVALID_ARG;
}
#if CONFIG_SPIRAM_ECC_ENABLE
*out_size_bytes = s_psram_size * 7 / 8;
#else
*out_size_bytes = s_psram_size;
#endif
return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE);
}