esp-idf/components/esp_adc/deprecated/esp32s2/esp_adc_cal_legacy.c

202 lines
8.1 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "esp_types.h"
#include "soc/efuse_periph.h"
#include "esp_err.h"
#include "esp_check.h"
#include "assert.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "esp_efuse_rtc_table.h"
#include "hal/adc_hal.h"
#include "hal/adc_types.h"
#include "driver/adc_types_legacy.h"
#include "esp_adc_cal_types_legacy.h"
const static char LOG_TAG[] = "adc_calib";
/* ------------------------ Characterization Constants ---------------------- */
// coeff_a and coeff_b are actually floats
// they are scaled to put them into uint32_t so that the headers do not have to be changed
static const int coeff_a_scaling = 65536;
static const int coeff_b_scaling = 1024;
/* -------------------- Characterization Helper Data Types ------------------ */
typedef struct {
int adc_calib_high;
int adc_calib_low;
} adc_calib_data_ver1;
typedef struct {
int adc_calib_high; // the reading of adc ...
int adc_calib_high_voltage; // ... at this voltage (mV)
} adc_calib_data_ver2;
typedef struct {
char version_num;
adc_unit_t adc_num;
adc_atten_t atten_level;
union {
adc_calib_data_ver1 ver1;
adc_calib_data_ver2 ver2;
} efuse_data;
} adc_calib_parsed_info;
static bool prepare_calib_data_for(adc_unit_t adc_num, adc_atten_t atten, adc_calib_parsed_info *parsed_data_storage)
{
int version_num = esp_efuse_rtc_table_read_calib_version();
int tag;
parsed_data_storage->version_num = version_num;
parsed_data_storage->adc_num = adc_num;
parsed_data_storage->atten_level = atten;
switch (version_num) {
case 1:
// note: use the adc_num as in hal, which start from 0.
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VLOW);
parsed_data_storage->efuse_data.ver1.adc_calib_low = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VHIGH);
parsed_data_storage->efuse_data.ver1.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
break;
case 2:
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V2_PARAM_VHIGH);
parsed_data_storage->efuse_data.ver2.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
switch (parsed_data_storage->atten_level) {
case ADC_ATTEN_DB_0:
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 600;
break;
case ADC_ATTEN_DB_2_5:
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 800;
break;
case ADC_ATTEN_DB_6:
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 1000;
break;
case ADC_ATTEN_DB_11:
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 2000;
break;
default:
break;
}
break;
default:
// fall back to case 1 with zeros as params.
parsed_data_storage->version_num = 1;
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VLOW);
parsed_data_storage->efuse_data.ver1.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, true);
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VHIGH);
parsed_data_storage->efuse_data.ver1.adc_calib_low = esp_efuse_rtc_table_get_parsed_efuse_value(tag, true);
break;
}
return true;
}
/* ----------------------- Characterization Functions ----------------------- */
/**
* (Used in V1 of calibration scheme)
* The Two Point calibration measures the reading at two specific input voltages, and calculates the (assumed linear) relation
* between input voltage and ADC response. (Response = A * Vinput + B)
* A and B are scaled ints.
* @param high The ADC response at the higher voltage of the corresponding attenuation (600mV, 800mV, 1000mV, 2000mV).
* @param low The ADC response at the lower voltage of the corresponding attenuation (all 250mV).
*
*/
static void characterize_using_two_point(adc_unit_t adc_num,
adc_atten_t atten,
uint32_t high,
uint32_t low,
uint32_t *coeff_a,
uint32_t *coeff_b)
{
// once we have recovered the reference high(Dhigh) and low(Dlow) readings, we can calculate a and b from
// the measured high and low readings
static const uint32_t v_high[] = {600, 800, 1000, 2000};
static const uint32_t v_low = 250;
*coeff_a = coeff_a_scaling * (v_high[atten] - v_low) / (high - low);
*coeff_b = coeff_b_scaling * (v_low * high - v_high[atten] * low) / (high - low);
}
/*
* Estimate the (assumed) linear relationship btwn the measured raw value and the voltage
* with the previously done measurement when the chip was manufactured.
* */
static bool calculate_characterization_coefficients(const adc_calib_parsed_info *parsed_data, esp_adc_cal_characteristics_t *chars)
{
switch (parsed_data->version_num) {
case 1:
ESP_LOGD(LOG_TAG, "Calib V1, low%dmV, high%dmV", parsed_data->efuse_data.ver1.adc_calib_low, parsed_data->efuse_data.ver1.adc_calib_high);
characterize_using_two_point(parsed_data->adc_num, parsed_data->atten_level,
parsed_data->efuse_data.ver1.adc_calib_high, parsed_data->efuse_data.ver1.adc_calib_low,
&(chars->coeff_a), &(chars->coeff_b));
break;
case 2:
ESP_LOGD(LOG_TAG, "Calib V2, volt%dmV", parsed_data->efuse_data.ver2.adc_calib_high);
chars->coeff_a = coeff_a_scaling * parsed_data->efuse_data.ver2.adc_calib_high_voltage /
parsed_data->efuse_data.ver2.adc_calib_high;
chars->coeff_b = 0;
break;
default:
return false;
break;
}
return true;
}
/* ------------------------- Public API ------------------------------------- */
esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
{
if (source != ESP_ADC_CAL_VAL_EFUSE_TP) {
return ESP_ERR_NOT_SUPPORTED;
}
uint8_t adc_encoding_version = esp_efuse_rtc_table_read_calib_version();
if (adc_encoding_version != 1 && adc_encoding_version != 2) {
// current version only accepts encoding ver 1 and ver 2.
return ESP_ERR_INVALID_VERSION;
}
return ESP_OK;
}
esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
adc_atten_t atten,
adc_bits_width_t bit_width,
uint32_t default_vref,
esp_adc_cal_characteristics_t *chars)
{
bool res __attribute__((unused));
adc_calib_parsed_info efuse_parsed_data = {0};
// Check parameters
assert((adc_num == ADC_UNIT_1) || (adc_num == ADC_UNIT_2));
assert(chars != NULL);
assert(bit_width == ADC_WIDTH_BIT_13);
// make sure adc is calibrated.
res = prepare_calib_data_for(adc_num, atten, &efuse_parsed_data);
assert(res);
res = calculate_characterization_coefficients(&efuse_parsed_data, chars);
assert(res);
ESP_LOGD(LOG_TAG, "adc%d (atten leven %d) calibration done: A:%" PRId32 " B:%" PRId32, adc_num, atten, chars->coeff_a, chars->coeff_b);
// Initialize remaining fields
chars->adc_num = adc_num;
chars->atten = atten;
chars->bit_width = bit_width;
// these values are not used as the corresponding calibration themes are deprecated.
chars->vref = 0;
chars->low_curve = NULL;
chars->high_curve = NULL;
// in esp32s2 we only use the two point method to calibrate the adc.
return ESP_ADC_CAL_VAL_EFUSE_TP;
}
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
{
assert(chars != NULL);
return adc_reading * chars->coeff_a / coeff_a_scaling + chars->coeff_b / coeff_b_scaling;
}