GY-63_MS5611/libraries/MAX6675/MAX6675.cpp
2022-11-16 13:14:42 +01:00

170 lines
3.5 KiB
C++

//
// FILE: MAX6675.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.1.2
// PURPOSE: Arduino library for MAX6675 chip for K type thermocouple
// DATE: 2022-01-11
// URL: https://github.com/RobTillaart/MAX6675
//
// HISTORY: see changelog.md
#include "MAX6675.h"
MAX6675::MAX6675()
{
}
void MAX6675::begin(const uint8_t select)
{
begin(255, select, 255);
}
void MAX6675::begin(const uint8_t clock, const uint8_t select, const uint8_t miso)
{
_clock = clock;
_miso = miso;
_select = select;
_hwSPI = (_clock == 255);
_lastTimeRead = 0;
_offset = 0;
_status = STATUS_NOREAD;
_temperature = MAX6675_NO_TEMPERATURE;
_rawData = 0;
setSPIspeed(1000000);
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
if (_hwSPI)
{
#if defined(ESP32)
if (_useHSPI) // HSPI
{
mySPI = new SPIClass(HSPI);
mySPI->end();
mySPI->begin(14, 12, 13, _select); // CLK=14 MISO=12 MOSI=13
}
else // VSPI
{
mySPI = new SPIClass(VSPI);
mySPI->end();
mySPI->begin(18, 19, 23, _select); // CLK=18 MISO=19 MOSI=23
}
#else // generic hardware SPI
mySPI = &SPI;
mySPI->end();
mySPI->begin();
#endif
delay(1);
}
else
{
pinMode(_clock, OUTPUT);
digitalWrite(_clock, LOW);
pinMode(_miso, INPUT);
}
}
void MAX6675::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
};
#if defined(ESP32)
void MAX6675::setGPIOpins(uint8_t clock, uint8_t miso, uint8_t mosi, uint8_t select)
{
_clock = clock;
_miso = miso;
_select = select;
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
// disable SPI and enable again
mySPI->end();
mySPI->begin(clock, miso, mosi, select);
}
#endif
uint8_t MAX6675::read()
{
// return value of _read() page 5 datasheet
// BITS DESCRIPTION
// ------------------------------
// 00 three state ?
// 01 device ID ?
// 02 INPUT OPEN
// 03 - 14 TEMPERATURE (RAW)
// 15 SIGN
uint16_t value = _read();
// needs a pull up on MISO pin to work properly!
if (value == 0xFFFF)
{
_status = STATUS_NO_COMMUNICATION;
return _status;
}
_lastTimeRead = millis();
// process status bit 2
_status = value & 0x04;
value >>= 3;
// process temperature bits
_temperature = (value & 0x1FFF) * 0.25;
// dummy negative flag set ?
// if (value & 0x2000)
return _status;
}
uint32_t MAX6675::_read(void)
{
_rawData = 0;
// DATA TRANSFER
if (_hwSPI)
{
mySPI->beginTransaction(_spi_settings);
digitalWrite(_select, LOW);
_rawData = mySPI->transfer(0);
_rawData <<= 8;
_rawData += mySPI->transfer(0);
digitalWrite(_select, HIGH);
mySPI->endTransaction();
}
else // Software SPI
{
// split _swSPIdelay in equal dLow and dHigh
// dLow should be longer one when _swSPIdelay = odd.
uint16_t dHigh = _swSPIdelay/2;
uint16_t dLow = _swSPIdelay - dHigh;
digitalWrite(_select, LOW);
for (int8_t i = 15; i >= 0; i--)
{
_rawData <<= 1;
digitalWrite(_clock, LOW);
if (dLow > 0) delayMicroseconds(dLow); // DUE might need 1 us
if ( digitalRead(_miso) ) _rawData++;
digitalWrite(_clock, HIGH);
if (dHigh > 0) delayMicroseconds(dHigh); // DUE
}
digitalWrite(_select, HIGH);
}
return _rawData;
}
// -- END OF FILE --