2022-11-25 19:45:57 +01:00

271 lines
7.5 KiB
C++

#pragma once
//
// FILE: Statistic.h
// AUTHOR: Rob Tillaart
// modified at 0.3 by Gil Ross at physics dot org
// template version 1.0.0 by Glen Cornell
// VERSION: 1.0.1
// PURPOSE: Recursive Statistical library for Arduino
// HISTORY: See CHANGELOG.md
//
// NOTE: 2011-01-07 Gill Ross
// Rob Tillaart's Statistic library uses one-pass of the data (allowing
// each value to be discarded), but expands the Sum of Squares Differences to
// difference the Sum of Squares and the Average Squared. This is susceptible
// to bit length precision errors with the float type (only 5 or 6 digits
// absolute precision) so for long runs and high ratios of
// the average value to standard deviation the estimate of the
// standard error (deviation) becomes the difference of two large
// numbers and will tend to zero.
//
// For small numbers of iterations and small Average/SE the original code is
// likely to work fine.
// It should also be recognised that for very large samples, questions
// of stability of the sample assume greater importance than the
// correctness of the asymptotic estimators.
//
// This recursive algorithm, which takes slightly more computation per
// iteration is numerically stable.
// It updates the number, mean, max, min and SumOfSquaresDiff each step to
// deliver max min average, population standard error (standard deviation) and
// unbiased SE.
// Toolchains for some platforms don't have the stdc++ library, so
// we'll make substitutions for features that we use. If your
// platform isn't specified here and fails to compile, then you can
// explicitly override the HAVE_STDCXX_TYPE_TRAITS, HAVE_STDCXX_CMATH,
// and HAVE_STDCXX_CSTDINT feature macros in your build environment.
#define STATISTIC_LIB_VERSION (F("1.0.1"))
#if defined (ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_LEONARDO) || defined(ARDUINO_AVR_MEGA2560)
#define HAVE_STDCXX_TYPE_TRAITS 0
#define HAVE_STDCXX_CMATH 0
#define HAVE_STDCXX_CSTDINT 0
#else
#ifndef HAVE_STDCXX_TYPE_TRAITS
#define HAVE_STDCXX_TYPE_TRAITS 1
#endif
#ifndef HAVE_STDCXX_CMATH
#define HAVE_STDCXX_CMATH 1
#endif
#ifndef HAVE_STDCXX_CSTDINT
#define HAVE_STDCXX_CSTDINT 1
#endif
#endif
#if HAVE_STDCXX_TYPE_TRAITS || defined(_GLIBCXX_TYPE_TRAITS)
#include <type_traits>
#else
namespace std {
// substitute for std::conditional if not in your tool chain
template<bool B, class T, class F>
struct conditional { typedef T type; };
template<class T, class F>
struct conditional<false, T, F> { typedef F type; };
};
#endif /* HAVE_STDCXX_TYPE_TRAITS */
#if HAVE_STDCXX_CMATH || defined(_GLIBCXX_CMATH)
#include <cmath>
#else
#include <math.h>
// substitute for std::sqrt functions if not in your tool chain
#undef sqrt
namespace std {
inline float sqrt(float n) { return __builtin_sqrtf(n); }
inline double sqrt(double n) { return __builtin_sqrt(n); }
inline long double sqrt(long double n) { return __builtin_sqrtl(n); }
};
#endif /* HAVE_STDCXX_CMATH */
#if HAVE_STDCXX_CSTDINT || defined(_GLIBCXX_CSTDINT)
#include <cstdint>
#else
#include <stdint.h> // uint32_t, etc.
#endif /* HAVE_STDCXX_CSTDINT */
#if HAVE_STDCXX_LIMITS || defined(_GLIBCXX_NUMERIC_LIMITS)
#include <limits>
#else
namespace std {
template<typename T>
struct numeric_limits {
static constexpr T
quiet_NaN() { return T(); }
};
template<>
struct numeric_limits<float> {
static constexpr float
quiet_NaN() { return __builtin_nanf(""); }
};
template<>
struct numeric_limits<double> {
static constexpr double
quiet_NaN() { return __builtin_nan(""); }
};
template<>
struct numeric_limits<long double> {
static constexpr long double
quiet_NaN() { return __builtin_nanl(""); }
};
};
#endif /* HAVE_STDCXX_LIMITS */
///////////////////////////////////////////////////////////////////////////////
//
// STATISTICS CLASS
//
namespace statistic {
template <typename T = float, typename C = uint32_t, bool _useStdDev = true>
class Statistic
{
public:
typedef T value_type;
typedef C count_type;
static constexpr value_type NaN { std::numeric_limits<value_type>::quiet_NaN() };
Statistic() = default;
void clear() {
_cnt = 0;
_sum = 0;
_min = 0;
_max = 0;
_extra.clear();
// NOTE: _extra "guards" the conditional code e.g. ssqdiff
// NOTE: ssqdiff = not _ssq but sum of square differences
// which is SUM(from i = 1 to N) of f(i)-_ave_N)**2
}
// returns value actually added
value_type add(const value_type value) {
value_type previousSum = _sum;
if (_cnt == 0)
{
_min = value;
_max = value;
} else {
if (value < _min) _min = value;
else if (value > _max) _max = value;
}
_sum += value;
_cnt++;
if (_useStdDev && (_cnt > 1))
{
value_type _store = (_sum / _cnt - value);
_extra.ssqdif(_extra.ssqdif() + _cnt * _store * _store / (_cnt - 1));
// NOTE: pre 1.0.0 code
// ~10% faster but limits the amount of samples to 65K as _cnt*_cnt overflows
// value_type _store = _sum - _cnt * value;
// _ssqdif = _ssqdif + _store * _store / (_cnt*_cnt - _cnt);
//
// solution: TODO verify
// _ssqdif = _ssqdif + (_store * _store / _cnt) / (_cnt - 1);
}
return _sum - previousSum;
}
// returns the number of values added
count_type count() const { return _cnt; }; // zero if count == zero
value_type sum() const { return _sum; }; // zero if count == zero
value_type minimum() const { return _min; }; // zero if count == zero
value_type maximum() const { return _max; }; // zero if count == zero
// NAN if count == zero
value_type average() const {
if (_cnt == 0) return NaN; // prevent DIV0 error
return _sum / _cnt;
}
// useStdDev must be true to use next three
// all return NAN if count == zero
value_type variance() const {
if (!_useStdDev) return NaN;
if (_cnt == 0) return NaN; // prevent DIV0 error
return _extra.ssqdif() / _cnt;
}
// Population standard deviation
value_type pop_stdev() const {
if (!_useStdDev) return NaN;
if (_cnt == 0) return NaN; // prevent DIV0 error
return std::sqrt( _extra.ssqdif() / _cnt);
}
value_type unbiased_stdev() const {
if (!_useStdDev) return NaN;
if (_cnt < 2) return NaN; // prevent DIV0 error
return std::sqrt( _extra.ssqdif() / (_cnt - 1));
}
// deprecated methods:
Statistic(bool) {
} __attribute__ ((deprecated ("use default constructor instead")));
void clear(bool) {
clear();
} __attribute__ ((deprecated ("use Statistic::clear(void) instead")));
protected:
count_type _cnt { 0 };
value_type _sum { 0.0 };
value_type _min { 0.0 };
value_type _max { 0.0 };
// Conditionally compile to reduce dead code if not used
struct Empty {
void clear() { }
value_type ssqdif() const { return NaN; }
void ssqdif(value_type v) { }
};
struct StdDev {
value_type _ssqdif { 0.0 }; // sum of squares difference
void clear() { _ssqdif = 0.0; }
value_type ssqdif() const { return _ssqdif; }
void ssqdif(value_type v) { _ssqdif = v; }
};
typename std::conditional<_useStdDev, StdDev, Empty>::type _extra;
};
} // namespace statistic
// This typedef maintains backwards API compatibility with library
// versions <= 0.4.4.
typedef statistic::Statistic<float, uint32_t, true> Statistic;
// NOTE: Do not issue 'using statistic;' in your code because the
// compiler will not be able to distinguish between the template
// '::Statistic' and the typedef 'statistic::Statistic'
// -- END OF FILE --