GY-63_MS5611/libraries/Prandom/Prandom.cpp
2021-01-29 12:31:58 +01:00

313 lines
6.3 KiB
C++

//
// FILE: Prandom.cpp
// AUTHOR: Rob dot Tillaart at gmail dot com
// VERSION: 0.1.3
// PURPOSE: Arduino library for random number generation with Python random interface
// URL: https://github.com/RobTillaart/Prandom
//
// HISTORY:
// 0.1.0 2020-05-13 complete redo based upon python random interface
// https://docs.python.org/3/library/random.html
// 0.1.1 renamed all to Prandom
// 0.1.2 2020-06-19 fix library.json
// 0.1.3 2021-01-06 arduino-CI + unit test
// code based upon Python implementation although some small
// optimizations and tweaks were needed to get it working.
#include "Prandom.h"
Prandom::Prandom()
{
seed();
}
Prandom::Prandom(uint32_t s)
{
seed(s);
}
void Prandom::seed()
{
// no argument ==> time based.
seed(_rndTime());
}
void Prandom::seed(uint32_t s, uint32_t t)
{
// set marsaglia constants, prevent 0 as value
if (s == 0) s = 1;
if (t == 0) t = 2;
_m_w = s;
_m_z = t;
}
uint32_t Prandom::getrandbits(uint8_t n)
{
uint8_t shift = min(31, n - 1);
return _rnd(1UL << shift);
}
uint32_t Prandom::randrange(uint32_t stop)
{
return _rnd(stop);
}
uint32_t Prandom::randrange(uint32_t start, uint32_t stop, uint32_t step)
{
if (step == 1) return start + _rnd(stop - start);
return start + step * _rnd((stop - start + step - 1) / step);
}
// returns value between 0 and top which defaults to 1.0
// the parameter does not exist in Python
// note: not all possible (0xFFFFFFFF) values are used
// function has an uniform distribution.
float Prandom::random(const float top)
{
if (top == 0) return 0;
float f = (top * __random()) / 0xFFFFFFFF;
return f;
}
float Prandom::uniform(float lo, float hi)
{
if (lo == hi) return lo;
return lo + random(hi - lo);
}
float Prandom::triangular(float lo, float hi, float mid)
{
if (lo == hi) return lo;
float val = random();
if (val > mid)
{
val = 1 - val;
mid = 1 - mid;
float t = hi;
hi = lo;
lo = t;
}
return lo + (hi - lo) * sqrt(val * mid);
}
// minor optimization.
float Prandom::normalvariate(float mu, float sigma)
{
// const float NV_MAGICCONST = 4 * exp(-0.5)/sqrt(2.0);
const float NV_MAGICCONST = 2 * exp(-0.5)/sqrt(2.0);
float u1, u2, z;
while (true)
{
u1 = random();
u2 = 1 - random();
z = NV_MAGICCONST * (u1 - 0.5) / u2 ;
// if ((z * z / 4) <= -log(u2)) break;
if ((z * z) <= -log(u2)) break;
}
return z * sigma + mu;
}
float Prandom::lognormvariate(float mu, float sigma)
{
return exp(normalvariate(mu, sigma));
}
// implemented slightly differently
float Prandom::gauss(float mu, float sigma)
{
static bool generate = false;
static float next = 0;
float z = 0;
generate = !generate;
if (generate == false)
{
z = next;
}
else
{
float x2pi = random(TWO_PI);
float g2rad = sqrt( -2.0 * log(1.0 - random()));
z = cos(x2pi) * g2rad;
next = sin(x2pi) * g2rad;
}
return z * sigma + mu;
};
float Prandom::expovariate(float lambda)
{
return -log(1.0 - random()) / lambda;
}
// alpha & beta > 0
float Prandom::gammavariate(float alpha, float beta)
{
const float LOG4 = log(4);
const float SG_MAGICCONST = 1.0 + log(4.5);
if (alpha > 1.0)
{
// # Uses R.C.H. Cheng, "The generation of Gamma
// # variables with non-integral shape parameters",
// # Applied Statistics, (1977), 26, No. 1, p71-74
float ainv = sqrt(2.0 * alpha - 1.0);
float bbb = alpha - LOG4;
float ccc = alpha + ainv;
float u1, u2, v, x, z, r;
while (true)
{
u1 = random();
if (u1 < 1e-7) continue;
if (u1 > 0.9999999) continue; // needed?
u2 = 1.0 - random();
v = log(u1 / (1.0 - u1)) / ainv;
x = alpha * exp(v);
z = u1 * u1 * u2;
r = bbb + ccc * v - x;
if ( ( (r + SG_MAGICCONST - 4.5 * z) >= 0.0) ||
(r >= log(z)) )
{
return x * beta;
}
}
}
else if (alpha == 1.0)
{
return -log(1.0 - random()) * beta;
}
else // alpha in 0..1
{
// # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
float u, b, p, x, u1;
while (true)
{
u = random();
b = (EULER + alpha)/ EULER;
p = b * u;
if ( p <= 1.0) x = pow(p, (1.0 / alpha));
else x = -log((b - p) / alpha);
u1 = random();
if (p > 1.0)
{
if (u1 <= pow(x, (alpha - 1.0))) break;
}
else
{
if (u1 <= exp(-x)) break;
}
}
return x * beta;
}
}
float Prandom::betavariate(float alpha, float beta)
{
float y = gammavariate(alpha, 1.0);
if (y == 0) return 0.0;
return y / (y + gammavariate(beta, 1.0));
};
float Prandom::paretovariate(float alpha)
{
float u = 1 - random();
return pow(u, (-1.0 / alpha));
}
float Prandom::weibullvariate(float alpha, float beta)
{
float u = 1 - random();
return alpha * pow(-log(u), 1.0/beta);
}
float Prandom::vonmisesvariate(float mu, float kappa)
{
if (kappa <= 1e-6) return TWO_PI * random();
float s = 0.5 / kappa;
float r = s + sqrt(1.0 + s * s);
float u1, u2, u3, z, d, q, f, theta;
do
{
u1 = random();
z = cos(PI * u1);
d = z / (r + z);
u2 = random();
} while ( ( u2 >= 1.0 - d * d ) && (u2 > (1.0 - d) * exp(d)) );
q = 1.0 / r;
f = (q + z) / (1.0 + q * z);
u3 = random();
if (u3 > 0.5) theta = mu + acos(f);
else theta = mu - acos(f);
while (theta < 0) theta += TWO_PI;
while (theta > TWO_PI) theta -= TWO_PI;
return theta;
}
////////////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
uint32_t Prandom::_rndTime()
{
return (micros() + (micros() >> 2) ) ^ (millis());
}
// TODO how to guarantee it uniform between 0 .. n-1
uint32_t Prandom::_rnd(uint32_t n)
{
// float formula works fastest but it looses precision for large values of n
// as floats have only 23 bit mantissa
uint32_t val = __random();
if (n > 0x003FFFFF) return val % n; // distribution will fail here
return (n * 1.0 * val) / 0xFFFFFFFF;
}
// An example of a simple pseudo-random number generator is the
// Multiply-with-carry method invented by George Marsaglia.
// two initializers (not null)
uint32_t Prandom::__random()
{
_m_z = 36969L * (_m_z & 65535L) + (_m_z >> 16);
_m_w = 18000L * (_m_w & 65535L) + (_m_w >> 16);
return (_m_z << 16) + _m_w; /* 32-bit result */
}
// -- END OF FILE --