GY-63_MS5611/libraries/Statistic/Statistic.cpp
Rob Tillaart 160de1e5a6 + version 0.3.2
+ changed count -> unsigned long allows for 2^32 samples
+ added variance
2013-08-17 15:44:20 +02:00

147 lines
3.6 KiB
C++
Raw Blame History

//
// FILE: Statistic.cpp
// AUTHOR: Rob dot Tillaart at gmail dot com
// modified at 0.3 by Gil Ross at physics dot org
// VERSION: see STATISTIC_LIB_VERSION in .h
// PURPOSE: Recursive statistical library for Arduino
//
// NOTE: 2011-01-07 Gill Ross
// Rob Tillaart's Statistic library uses one-pass of the data (allowing
// each value to be discarded), but expands the Sum of Squares Differences to
// difference the Sum of Squares and the Average Squared. This is susceptible
// to bit length precision errors with the float type (only 5 or 6 digits
// absolute precision) so for long runs and high ratios of
// the average value to standard deviation the estimate of the
// standard error (deviation) becomes the difference of two large
// numbers and will tend to zero.
//
// For small numbers of iterations and small Average/SE th original code is
// likely to work fine.
// It should also be recognised that for very large samples, questions
// of stability of the sample assume greater importance than the
// correctness of the asymptotic estimators.
//
// This recursive algorithm, which takes slightly more computation per
// iteration is numerically stable.
// It updates the number, mean, max, min and SumOfSquaresDiff each step to
// deliver max min average, population standard error (standard deviation) and
// unbiassed SE.
// -------------
//
// HISTORY:
// 0.1 - 2010-10-29 initial version
// 0.2 - 2010-10-29 stripped to minimal functionality
// 0.2.01 - 2010-10-30
// added minimim, maximum, unbiased stdev,
// changed counter to long -> int overflows @32K samples
// 0.3 - 2011-01-07
// branched from 0.2.01 version of Rob Tillaart's code
// 0.3.1 - minor edits
// 0.3.2 - 2012-11-10
// minor edits
// changed count -> unsigned long allows for 2^32 samples
// added variance()
//
// Released to the public domain
//
#include "Statistic.h"
Statistic::Statistic()
{
clear();
}
// resets all counters
void Statistic::clear()
{
_cnt = 0;
_sum = 0.0;
_min = 0.0;
_max = 0.0;
#ifdef STAT_USE_STDEV
_ssqdif = 0.0; // not _ssq but sum of square differences
// which is SUM(from i = 1 to N) of
// (f(i)-_ave_N)**2
#endif
}
// adds a new value to the data-set
void Statistic::add(float f)
{
if (_cnt == 0)
{
_min = f;
_max = f;
} else {
if (f < _min) _min = f;
if (f > _max) _max = f;
}
_sum += f;
_cnt++;
#ifdef STAT_USE_STDEV
if (_cnt >1)
{
_store = (_sum / _cnt - f);
_ssqdif = _ssqdif + _cnt * _store * _store / (_cnt-1);
}
#endif
}
// returns the number of values added
unsigned long Statistic::count()
{
return _cnt;
}
// returns the average of the data-set added sofar
float Statistic::average()
{
if (_cnt == 0) return NAN; // original code returned 0
return _sum / _cnt;
}
// returns the sum of the data-set (0 if no values added)
float Statistic::sum()
{
return _sum;
}
// returns the sum of the data-set (0 if no values added)
float Statistic::minimum()
{
return _min;
}
// returns the sum of the data-set (0 if no values added)
float Statistic::maximum()
{
return _max;
}
// Population standard deviation = s = sqrt [ S ( Xi - <20> )2 / N ]
// http://www.suite101.com/content/how-is-standard-deviation-used-a99084
#ifdef STAT_USE_STDEV
float Statistic::variance()
{
if (_cnt == 0) return NAN; // otherwise DIV0 error
return _ssqdif / _cnt;
}
float Statistic::pop_stdev()
{
if (_cnt == 0) return NAN; // otherwise DIV0 error
return sqrt( _ssqdif / _cnt);
}
float Statistic::unbiased_stdev()
{
if (_cnt < 2) return NAN; // otherwise DIV0 error
return sqrt( _ssqdif / (_cnt - 1));
}
#endif
// END OF FILE