mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
160de1e5a6
+ changed count -> unsigned long allows for 2^32 samples + added variance
147 lines
3.6 KiB
C++
147 lines
3.6 KiB
C++
//
|
||
// FILE: Statistic.cpp
|
||
// AUTHOR: Rob dot Tillaart at gmail dot com
|
||
// modified at 0.3 by Gil Ross at physics dot org
|
||
// VERSION: see STATISTIC_LIB_VERSION in .h
|
||
// PURPOSE: Recursive statistical library for Arduino
|
||
//
|
||
// NOTE: 2011-01-07 Gill Ross
|
||
// Rob Tillaart's Statistic library uses one-pass of the data (allowing
|
||
// each value to be discarded), but expands the Sum of Squares Differences to
|
||
// difference the Sum of Squares and the Average Squared. This is susceptible
|
||
// to bit length precision errors with the float type (only 5 or 6 digits
|
||
// absolute precision) so for long runs and high ratios of
|
||
// the average value to standard deviation the estimate of the
|
||
// standard error (deviation) becomes the difference of two large
|
||
// numbers and will tend to zero.
|
||
//
|
||
// For small numbers of iterations and small Average/SE th original code is
|
||
// likely to work fine.
|
||
// It should also be recognised that for very large samples, questions
|
||
// of stability of the sample assume greater importance than the
|
||
// correctness of the asymptotic estimators.
|
||
//
|
||
// This recursive algorithm, which takes slightly more computation per
|
||
// iteration is numerically stable.
|
||
// It updates the number, mean, max, min and SumOfSquaresDiff each step to
|
||
// deliver max min average, population standard error (standard deviation) and
|
||
// unbiassed SE.
|
||
// -------------
|
||
//
|
||
// HISTORY:
|
||
// 0.1 - 2010-10-29 initial version
|
||
// 0.2 - 2010-10-29 stripped to minimal functionality
|
||
// 0.2.01 - 2010-10-30
|
||
// added minimim, maximum, unbiased stdev,
|
||
// changed counter to long -> int overflows @32K samples
|
||
// 0.3 - 2011-01-07
|
||
// branched from 0.2.01 version of Rob Tillaart's code
|
||
// 0.3.1 - minor edits
|
||
// 0.3.2 - 2012-11-10
|
||
// minor edits
|
||
// changed count -> unsigned long allows for 2^32 samples
|
||
// added variance()
|
||
//
|
||
// Released to the public domain
|
||
//
|
||
|
||
#include "Statistic.h"
|
||
|
||
Statistic::Statistic()
|
||
{
|
||
clear();
|
||
}
|
||
|
||
// resets all counters
|
||
void Statistic::clear()
|
||
{
|
||
_cnt = 0;
|
||
_sum = 0.0;
|
||
_min = 0.0;
|
||
_max = 0.0;
|
||
#ifdef STAT_USE_STDEV
|
||
_ssqdif = 0.0; // not _ssq but sum of square differences
|
||
// which is SUM(from i = 1 to N) of
|
||
// (f(i)-_ave_N)**2
|
||
#endif
|
||
}
|
||
|
||
// adds a new value to the data-set
|
||
void Statistic::add(float f)
|
||
{
|
||
if (_cnt == 0)
|
||
{
|
||
_min = f;
|
||
_max = f;
|
||
} else {
|
||
if (f < _min) _min = f;
|
||
if (f > _max) _max = f;
|
||
}
|
||
_sum += f;
|
||
_cnt++;
|
||
|
||
#ifdef STAT_USE_STDEV
|
||
if (_cnt >1)
|
||
{
|
||
_store = (_sum / _cnt - f);
|
||
_ssqdif = _ssqdif + _cnt * _store * _store / (_cnt-1);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
// returns the number of values added
|
||
unsigned long Statistic::count()
|
||
{
|
||
return _cnt;
|
||
}
|
||
|
||
// returns the average of the data-set added sofar
|
||
float Statistic::average()
|
||
{
|
||
if (_cnt == 0) return NAN; // original code returned 0
|
||
return _sum / _cnt;
|
||
}
|
||
|
||
// returns the sum of the data-set (0 if no values added)
|
||
float Statistic::sum()
|
||
{
|
||
return _sum;
|
||
}
|
||
|
||
// returns the sum of the data-set (0 if no values added)
|
||
float Statistic::minimum()
|
||
{
|
||
return _min;
|
||
}
|
||
|
||
// returns the sum of the data-set (0 if no values added)
|
||
float Statistic::maximum()
|
||
{
|
||
return _max;
|
||
}
|
||
|
||
|
||
// Population standard deviation = s = sqrt [ S ( Xi - <20> )2 / N ]
|
||
// http://www.suite101.com/content/how-is-standard-deviation-used-a99084
|
||
#ifdef STAT_USE_STDEV
|
||
|
||
float Statistic::variance()
|
||
{
|
||
if (_cnt == 0) return NAN; // otherwise DIV0 error
|
||
return _ssqdif / _cnt;
|
||
}
|
||
|
||
float Statistic::pop_stdev()
|
||
{
|
||
if (_cnt == 0) return NAN; // otherwise DIV0 error
|
||
return sqrt( _ssqdif / _cnt);
|
||
}
|
||
|
||
float Statistic::unbiased_stdev()
|
||
{
|
||
if (_cnt < 2) return NAN; // otherwise DIV0 error
|
||
return sqrt( _ssqdif / (_cnt - 1));
|
||
}
|
||
|
||
#endif
|
||
// END OF FILE
|