2016-12-17 20:57:37 +01:00

300 lines
7.1 KiB
C++

//
// FILE: functionGenerator.h
// AUTHOR: Rob Tillaart
// VERSION: 0.1.04
// PURPOSE: functionGenerator functions (use with care)
// URL:
//
// HISTORY:
// 0.1.00 - 2015-01-01 - initial version
// 0.1.01 - 2015-01-01 - initial class version
// 0.1.02 - 2015-01-01 - refactor and research
// 0.1.03 - 2015-01-02 - added stair, more refactoring
// 0.1.04 - 2015-01-03 - added integer versions - to be used with 8 bit DAC
//
#ifndef functiongenerator_h
#define functiongenerator_h
#if ARDUINO < 100
#include <WProgram.h>
#else
#include <Arduino.h>
#endif
#define FUNCTIONGENERATOR_LIB_VERSION "0.1.04"
class funcgen
{
public:
funcgen(double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0)
{
begin(period, amplitude, phase, yShift);
}
void begin(double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0)
{
_period = period;
_freq1 = 1 / period;
_freq2 = 2 * _freq1;
_freq4 = 4 * _freq1;
_freq0 = TWO_PI * _freq1;
_amplitude = amplitude;
_phase = phase;
_yShift = yShift;
}
double sawtooth(double t)
{
double rv;
t += _phase;
if (t >= 0.0)
{
if (t >= _period) t = fmod(t, _period);
rv = _amplitude * (-1.0 + t *_freq2);
}
else
{
t = -t;
if (t >= _period) t = fmod(t, _period);
rv = _amplitude * ( 1.0 - t * _freq2);
}
rv += _yShift;
return rv;
}
double triangle(double t)
{
double rv;
t += _phase;
if (t < 0.0)
{
t = -t;
}
if (t >= _period) t = fmod(t, _period);
if ( t * 2 < _period)
{
rv = _amplitude * (-1.0 + t * _freq4);
}
else
{
rv = _amplitude * (3.0 - t * _freq4);
}
rv += _yShift;
return rv;
}
double square(double t)
{
double rv;
t += _phase;
if (t >= 0)
{
if (t >= _period) t = fmod(t, _period);
if ((t + t) < _period) rv = _amplitude;
else rv = -_amplitude;
}
else
{
t = -t;
if (t >= _period) t = fmod(t, _period);
if ( t * 2 < _period) rv = -_amplitude;
else rv = _amplitude;
}
rv += _yShift;
return rv;
}
double sinus(double t)
{
double rv;
t += _phase;
rv = _amplitude * sin(t * _freq0);
rv += _yShift;
return rv;
}
double stair(double t, uint16_t steps = 8)
{
t += _phase;
if (t >= 0)
{
if (t >= _period) t = fmod(t, _period);
int level = steps * t / _period;
return _yShift + _amplitude * (-1.0 + 2.0 * level / (steps - 1));
}
t = -t;
if (t >= _period) t = fmod(t, _period);
int level = steps * t / _period;
return _yShift + _amplitude * (1.0 - 2.0 * level / (steps - 1));
}
private:
double _period;
double _freq0;
double _freq1;
double _freq2;
double _freq4;
double _amplitude;
double _phase;
double _yShift;
};
//
// INTEGER VERSIONS FOR 8 BIT DAC
//
// 8 bits version
// t = 0..9999 period 10000 in millis, returns 0..255
/*
uint8_t ifgsaw(uint16_t t, uint16_t period = 1000)
{
return 255L * t / period;
}
uint8_t ifgtri(uint16_t t, uint16_t period = 1000)
{
if (t * 2 < period) return 510L * t / period;
return 255L - 510L * t / period;
}
uint8_t ifgsqr(uint16_t t, uint16_t period = 1000)
{
if (t * 2 < period) return 510L * t / period;
return 255L - 510L * t / period;
}
uint8_t ifgsin(uint16_t t, uint16_t period = 1000)
{
return sin(355L * t / period / 113); // LUT
}
uint8_t ifgstr(uint16_t t, uint16_t period = 1000, uint16_t steps = 8)
{
int level = 1L * steps * t / period;
return 255L * level / (steps - 1);
}
*/
//
// SIMPLE DOUBLE ONES
//
// t = 0..period
// period = 0.001 ... 10000 ?
/*
double fgsaw(double t, double period = 1.0)
{
if (t >= 0) return -1.0 + 2 * t / period;
return 1.0 + 2 * t / period;
}
double fgtri(double t, double period = 1.0)
{
if (t < 0) t = -t;
if (t * 2 < period) return -1.0 + 4 * t / period;
return 3.0 - 4 * t / period;
}
double fgsqr(double t, double period = 1.0)
{
if (t >= 0)
{
if ( 2 * t < period) return 1.0;
return -1.0;
}
t = -t;
if (2 * t < period) return -1.0;
return 1.0;
}
double fgsin(double t, double period = 1.0)
{
return sin(TWO_PI * t / period);
}
double fgstr(double t, double period = 1.0, uint16_t steps = 8)
{
if (t >= 0)
{
int level = steps * t / period;
return -1.0 + 2.0 * level / (steps - 1);
}
t = -t;
int level = steps * t / period;
return 1.0 - 2.0 * level / (steps - 1);
}
*/
//
// FULL DOUBLES ONES
//
double fgsaw(double t, double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0)
{
t += phase;
if (t >= 0)
{
if (t >= period) t = fmod(t, period);
return yShift + amplitude * (-1.0 + 2 * t / period);
}
t = -t;
if (t >= period) t = fmod(t, period);
return yShift + amplitude * ( 1.0 - 2 * t / period);
}
double fgtri(double t, double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0, double dutyCycle = 0.50)
{
t += phase;
if (t < 0) t = -t;
if (t >= period) t = fmod(t, period);
// 50 % dutyCycle = faster
// if (t * 2 < period) return yShift + amplitude * (-1.0 + 4 * t / period);
// return yShift + amplitude * (3.0 - 4 * t / period);
if (t < dutyCycle * period) return yShift + amplitude * (-1.0 + 2 * t / (dutyCycle * period));
// return yShift + amplitude * (-1.0 + 2 / (1 - dutyCycle) - 2 * t / ((1 - dutyCycle) * period));
return yShift + amplitude * (-1.0 + 2 / (1 - dutyCycle) * ( 1 - t / period));
}
double fgsqr(double t, double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0, double dutyCycle = 0.50)
{
t += phase;
if (t >= 0)
{
if (t >= period) t = fmod(t, period);
if (t < dutyCycle * period) return yShift + amplitude;
return yShift - amplitude;
}
t = -t;
if (t >= period) t = fmod(t, period);
if (t < dutyCycle * period) return yShift - amplitude;
return yShift + amplitude;
}
double fgsin(double t, double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0)
{
t += phase;
double rv = yShift + amplitude * sin(TWO_PI * t / period);
return rv;
}
double fgstr(double t, double period = 1.0, double amplitude = 1.0, double phase = 0.0, double yShift = 0.0, uint16_t steps = 8)
{
t += phase;
if (t >= 0)
{
if (t >= period) t = fmod(t, period);
int level = steps * t / period;
return yShift + amplitude * (-1.0 + 2.0 * level / (steps - 1));
}
t = -t;
if (t >= period) t = fmod(t, period);
int level = steps * t / period;
return yShift + amplitude * (1.0 - 2.0 * level / (steps - 1));
}
#endif
//
// END OF FILE
//