GY-63_MS5611/libraries/MAX31855_RT/MAX31855.cpp
2023-02-26 19:44:17 +01:00

219 lines
4.9 KiB
C++

//
// FILE: MAX31855.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.4.3
// PURPOSE: Arduino library for MAX31855 chip for K type thermocouple
// DATE: 2014-01-01
// URL: https://github.com/RobTillaart/MAX31855_RT
#include "MAX31855.h"
MAX31855::MAX31855()
{
}
void MAX31855::begin(const uint8_t select)
{
begin(255, select, 255);
}
void MAX31855::begin(const uint8_t clock, const uint8_t select, const uint8_t miso)
{
_clock = clock;
_miso = miso;
_select = select;
_hwSPI = (_clock == 255);
_lastTimeRead = 0;
_offset = 0;
_SeebeckC = K_TC;
_status = STATUS_NOREAD;
_temperature = MAX31855_NO_TEMPERATURE;
_internal = MAX31855_NO_TEMPERATURE;
_rawData = 0;
setSPIspeed(1000000);
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
if (_hwSPI)
{
#if defined(ESP32)
if (_useHSPI) // HSPI
{
mySPI = new SPIClass(HSPI);
mySPI->end();
mySPI->begin(14, 12, 13, _select); // CLK=14 MISO=12 MOSI=13
}
else // VSPI
{
mySPI = new SPIClass(VSPI);
mySPI->end();
mySPI->begin(18, 19, 23, _select); // CLK=18 MISO=19 MOSI=23
}
#else // generic hardware SPI
mySPI = &SPI;
mySPI->end();
mySPI->begin();
#endif
delay(1);
}
else
{
pinMode(_clock, OUTPUT);
digitalWrite(_clock, LOW);
pinMode(_miso, INPUT);
}
}
void MAX31855::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
};
#if defined(ESP32)
void MAX31855::setGPIOpins(uint8_t clock, uint8_t miso, uint8_t mosi, uint8_t select)
{
_clock = clock;
_miso = miso;
_select = select;
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
// disable SPI and enable again
mySPI->end();
mySPI->begin(clock, miso, mosi, select);
}
#endif
uint8_t MAX31855::read()
{
// return value of _read()
// BITS DESCRIPTION
// -------------------------------
// 00 - 02 STATUS
// 03 RESERVED
// 04 - 15 INTERNAL
// 16 FAULT-BIT
// 17 RESERVED
// 18 - 30 TEMPERATURE (RAW)
// 31 SIGN
uint32_t value = _read();
if (value == 0xFFFFFFFF) // needs a pull up on MISO pin to work properly!
{
// bit 3 and bit 17 should always be 0 - P10 datasheet
_status = STATUS_NO_COMMUNICATION;
return _status;
}
_lastTimeRead = millis();
// process status bit 0-2
_status = value & 0x0007;
// if (_status != STATUS_OK) // removed in 0.4.0 as internal can be valid.
// {
// return _status;
// }
value >>= 3;
// reserved bit 3, always 0
value >>= 1;
// process internal bit 4-15
_internal = (value & 0x07FF) * 0.0625;
// negative flag set ?
if (value & 0x0800)
{
_internal = -128 + _internal;
}
value >>= 12;
// Fault bit ignored as we have the 3 status bits
// _fault = value & 0x01;
value >>= 1;
// reserved bit 17, always 0
value >>= 1;
// process temperature bit 18-30 + sign bit = 31
_temperature = (value & 0x1FFF) * 0.25;
// negative flag set ?
if (value & 0x2000)
{
_temperature = -2048 + _temperature;
}
return _status;
}
uint32_t MAX31855::_read(void)
{
_rawData = 0;
// DATA TRANSFER
if (_hwSPI)
{
mySPI->beginTransaction(_spi_settings);
digitalWrite(_select, LOW); // must be after mySPI->beginTransaction() - see #14 STM32
for (uint8_t i = 0; i < 4; i++)
{
_rawData <<= 8;
_rawData += mySPI->transfer(0);
}
digitalWrite(_select, HIGH);
mySPI->endTransaction();
}
else // Software SPI
{
// split _swSPIdelay in equal dLow and dHigh
// dLow should be longer one when _swSPIdelay = odd.
uint16_t dHigh = _swSPIdelay / 2;
uint16_t dLow = _swSPIdelay - dHigh;
digitalWrite(_select, LOW);
for (int8_t i = 31; i >= 0; i--)
{
_rawData <<= 1;
digitalWrite(_clock, LOW);
if (dLow > 0) delayMicroseconds(dLow); // DUE might need 1 us
if ( digitalRead(_miso) ) _rawData++;
digitalWrite(_clock, HIGH);
if (dHigh > 0) delayMicroseconds(dHigh); // DUE
}
digitalWrite(_select, HIGH);
}
return _rawData;
}
float MAX31855::getTemperature()
{
// offset needs to be added after multiplication TCfactor
// not before otherwise offset will be larger / smaller
// default behaviour
if (_SeebeckC == K_TC) return _temperature + _offset;
// EXPERIMENTAL OTHER THERMOCOUPLES
// to be tested
// in practice this works also for K_TC but is way slower..
// 1: reverse calculate the Voltage measured (is this correct?)
float Vout = K_TC * (_temperature - _internal); // PAGE 8 datasheet
// 2: from Voltage to corrected temperature using the Seebeck Coefficient
float _temp = Vout / _SeebeckC + _internal + _offset;
return _temp;
}
// -- END OF FILE --