2021-11-16 17:42:29 +01:00

309 lines
5.6 KiB
C++

//
// FILE: HX711.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.3.0
// PURPOSE: Library for Loadcells for UNO
// URL: https://github.com/RobTillaart/HX711
//
// HISTORY:
// 0.1.0 2019-09-04 initial release
// 0.1.1 2019-09-09 change long to float (reduce footprint)
// 0.2.0 2020-06-15 refactor; add price functions;
// 0.2.1 2020-12-28 add arduino-ci + unit test
// 0.2.2 2021-05-10 add read_median(), fix typo, add mode operandi
// 0.2.3 2021-05-26 add running_average() mode
// 0.3.0 2021-11-14 fix #11 shiftIn timing
// update build-CI, readme.md, badges
#include "HX711.h"
HX711::HX711()
{
reset();
}
HX711::~HX711() {}
void HX711::begin(uint8_t dataPin, uint8_t clockPin)
{
_dataPin = dataPin;
_clockPin = clockPin;
pinMode(_dataPin, INPUT);
pinMode(_clockPin, OUTPUT);
digitalWrite(_clockPin, LOW);
reset();
}
void HX711::reset()
{
_offset = 0;
_scale = 1;
_gain = 128;
_lastRead = 0;
_mode = HX711_AVERAGE_MODE;
}
bool HX711::is_ready()
{
return digitalRead(_dataPin) == LOW;
}
// from datasheet page 4
// When output data is not ready for retrieval,
// digital output pin DOUT is high. Serial clock
// input PD_SCK should be low. When DOUT goes
// to low, it indicates data is ready for retrieval.
float HX711::read()
{
// this waiting takes most time...
while (digitalRead(_dataPin) == HIGH) yield();
union
{
long value = 0;
uint8_t data[4];
} v;
noInterrupts();
// Pulse the clock pin 24 times to read the data.
// v.data[2] = shiftIn(_dataPin, _clockPin, MSBFIRST);
// v.data[1] = shiftIn(_dataPin, _clockPin, MSBFIRST);
// v.data[0] = shiftIn(_dataPin, _clockPin, MSBFIRST);
v.data[2] = _shiftIn();
v.data[1] = _shiftIn();
v.data[0] = _shiftIn();
// TABLE 3 page 4 datasheet
// only default verified, so other values not supported yet
uint8_t m = 1; // default gain == 128
if (_gain == 64) m = 3;
if (_gain == 32) m = 2;
while (m > 0)
{
digitalWrite(_clockPin, HIGH);
digitalWrite(_clockPin, LOW);
m--;
}
interrupts();
// SIGN extend
if (v.data[2] & 0x80) v.data[3] = 0xFF;
_lastRead = millis();
return 1.0 * v.value;
}
// assumes tare() has been set.
void HX711::calibrate_scale(uint16_t weight, uint8_t times)
{
_scale = (1.0 * weight) / (read_average(times) - _offset);
}
// will be obsolete
void HX711::callibrate_scale(uint16_t weight, uint8_t times)
{
calibrate_scale(weight, times);
};
void HX711::wait_ready(uint32_t ms)
{
while (!is_ready())
{
delay(ms);
}
}
bool HX711::wait_ready_retry(uint8_t retries, uint32_t ms)
{
while (retries--)
{
if (is_ready()) return true;
delay(ms);
}
return false;
}
bool HX711::wait_ready_timeout(uint32_t timeout, uint32_t ms)
{
uint32_t start = millis();
while (millis() - start < timeout)
{
if (is_ready()) return true;
delay(ms);
}
return false;
}
float HX711::read_average(uint8_t times)
{
if (times < 1) times = 1;
float sum = 0;
for (uint8_t i = 0; i < times; i++)
{
sum += read();
yield();
}
return sum / times;
}
float HX711::read_median(uint8_t times)
{
if (times > 15) times = 15;
if (times < 3) times = 3;
float s[15];
for (uint8_t i = 0; i < times; i++)
{
s[i] = read();
yield();
}
_insertSort(s, times);
if (times & 0x01) return s[times/2];
return (s[times/2] + s[times/2+1])/2;
}
float HX711::read_medavg(uint8_t times)
{
if (times > 15) times = 15;
if (times < 3) times = 3;
float s[15];
for (uint8_t i = 0; i < times; i++)
{
s[i] = read();
yield();
}
_insertSort(s, times);
float sum = 0;
// iterate over 1/4 to 3/4 of the array
uint8_t cnt = 0;
uint8_t first = (times + 2) / 4;
uint8_t last = times - first - 1;
for (uint8_t i = first; i <= last; i++) // !! include last too
{
sum += s[i];
cnt++;
}
return sum/cnt;
}
float HX711::read_runavg(uint8_t times, float alpha)
{
if (times < 1) times = 1;
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
float val = read();
for (uint8_t i = 1; i < times; i++)
{
val += alpha * (read() - val);
yield();
}
return val;
}
void HX711::_insertSort(float * array, uint8_t size)
{
uint8_t t, z;
float temp;
for (t = 1; t < size; t++)
{
z = t;
temp = array[z];
while( (z > 0) && (temp < array[z - 1] ))
{
array[z] = array[z - 1];
z--;
}
array[z] = temp;
yield();
}
}
float HX711::get_value(uint8_t times)
{
float raw;
switch(_mode)
{
case HX711_RUNAVG_MODE:
raw = read_runavg(times);
break;
case HX711_MEDAVG_MODE:
raw = read_medavg(times);
break;
case HX711_MEDIAN_MODE:
raw = read_median(times);
break;
case HX711_AVERAGE_MODE:
default:
raw = read_average(times);
break;
}
return raw - _offset;
};
float HX711::get_units(uint8_t times)
{
float units = get_value(times) * _scale;
return units;
};
void HX711::power_down()
{
digitalWrite(_clockPin, LOW);
digitalWrite(_clockPin, HIGH);
}
void HX711::power_up()
{
digitalWrite(_clockPin, LOW);
}
// MSB_FIRST optimized shiftIn
// see datasheet page 5 for timing
uint8_t HX711::_shiftIn()
{
uint8_t value = 0;
uint8_t mask = 0x80;
while(mask > 0)
{
digitalWrite(_clockPin, HIGH);
delayMicroseconds(1); // T2 >= 0.2 us
if (digitalRead(_dataPin) == HIGH)
{
value |= mask;
}
digitalWrite(_clockPin, LOW);
delayMicroseconds(1); // keep duty cycle ~50%
mask >>= 1;
}
return value;
}
// -- END OF FILE --