GY-63_MS5611/libraries/DHTNEW/dhtnew.cpp
2021-06-13 12:56:40 +02:00

395 lines
10 KiB
C++

//
// FILE: dhtnew.cpp
// AUTHOR: Rob.Tillaart@gmail.com
// VERSION: 0.4.9
// PURPOSE: DHT Temperature & Humidity Sensor library for Arduino
// URL: https://github.com/RobTillaart/DHTNEW
//
// HISTORY:
// 0.1.0 2017-07-24 initial version based upon DHTStable
// 0.1.1 2017-07-29 add begin() to determine type once and for all instead of every call + refactor
// 0.1.2 2018-01-08 improved begin() + refactor()
// 0.1.3 2018-01-08 removed begin() + moved detection to read() function
// 0.1.4 2018-04-03 add get-/setDisableIRQ(bool b)
// 0.1.5 2019-01-20 fix negative temperature DHT22 - issue #120
// 0.1.6 2020-04-09 #pragma once, readme.md, own repo
// 0.1.7 2020-05-01 prevent premature read; add waitForReading flag (Kudo's to Mr-HaleYa),
// 0.2.0 2020-05-02 made temperature and humidity private (Kudo's to Mr-HaleYa),
// 0.2.1 2020-05-27 Fix #11 - Adjust bit timing threshold
// 0.2.2 2020-06-08 added ERROR_SENSOR_NOT_READY and differentiate timeout errors
// 0.3.0 2020-06-12 added getReadDelay & setReadDelay to tune reading interval
// removed get/setDisableIRQ; adjusted wakeup timing; refactor
// 0.3.1 2020-07-08 added powerUp() powerDown();
// 0.3.2 2020-07-17 fix #23 added get/setSuppressError(); overrulable DHTLIB_INVALID_VALUE
// 0.3.3 2020-08-18 fix #29, create explicit delay between pulling line HIGH and
// waiting for LOW in handshake to trigger the sensor.
// On fast ESP32 this fails because the capacity / voltage of the long wire
// cannot rise fast enough to be read back as HIGH.
// 0.3.4 2020-09-23 Added **waitFor(state, timeout)** to follow timing from datasheet.
// Restored disableIRQ flag as problems occured on AVR. The default of
// this flag on AVR is false so interrupts are allowed.
// This need some investigation
// Fix wake up timing for DHT11 as it does not behave according datasheet.
// fix wakeupDelay bug in setType();
// 0.4.0 2020-11-10 added DHTLIB_WAITING_FOR_READ as return value of read (minor break of interface)
// 0.4.1 2020-11-11 getType() attempts to detect sensor type
// 2020-12-12 add arduino -CI + readme
// 0.4.2 2020-12-15 fix negative temperatures
// 0.4.3 2021-01-13 add reset(), add lastRead()
// 0.4.4 2021-02-01 fix negative temperatures DHT22 (again)
// 0.4.5 2021-02-14 fix -0°C encoding of DHT22 ( bit pattern 0x8000 )
// 0.4.6 2021-04-09 fix #57 negative temperatures DHT22
// Do not use 0.4.5 and 0.4.4 as these are incorrect for negative temperature.
// 0.4.7 2021-04-09 fix #60 negative temperatures below -25.5°C + readme.md
// 0.4.8 2021-05-27 fixes to improve Arduino-lint
// 0.4.9 2021-06-13 add optional flag DHTLIB_VALUE_OUT_OF_RANGE
#include "dhtnew.h"
#include <stdint.h>
// these defines are not for user to adjust
#define DHTLIB_DHT11_WAKEUP 18
#define DHTLIB_DHT_WAKEUP 1
// READ_DELAY for blocking read
// datasheet: DHT11 = 1000 and DHT22 = 2000
// use setReadDelay() to overrule (at own risk)
// as individual sensors can be read faster.
// see example DHTnew_setReadDelay.ino
#define DHTLIB_DHT11_READ_DELAY 1000
#define DHTLIB_DHT22_READ_DELAY 2000
/////////////////////////////////////////////////////
//
// PUBLIC
//
DHTNEW::DHTNEW(uint8_t pin)
{
_dataPin = pin;
reset();
};
void DHTNEW::reset()
{
// Data-bus's free status is high voltage level.
pinMode(_dataPin, OUTPUT);
digitalWrite(_dataPin, HIGH);
_wakeupDelay = 0;
_type = 0;
_humOffset = 0.0;
_tempOffset = 0.0;
_humidity = 0.0;
_temperature = 0.0;
_lastRead = 0;
_disableIRQ = true;
_waitForRead = false;
_suppressError = false;
_readDelay = 0;
#if defined(__AVR__)
_disableIRQ = false;
#endif
}
uint8_t DHTNEW::getType()
{
if (_type == 0) read();
return _type;
}
void DHTNEW::setType(uint8_t type)
{
if ((type == 0) || (type == 11))
{
_type = type;
_wakeupDelay = DHTLIB_DHT11_WAKEUP;
}
if (type == 22)
{
_type = type;
_wakeupDelay = DHTLIB_DHT_WAKEUP;
}
}
// return values:
// DHTLIB_OK
// DHTLIB_WAITING_FOR_READ
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_BIT_SHIFT
// DHTLIB_ERROR_SENSOR_NOT_READY
// DHTLIB_ERROR_TIMEOUT_A
// DHTLIB_ERROR_TIMEOUT_B
// DHTLIB_ERROR_TIMEOUT_C
// DHTLIB_ERROR_TIMEOUT_D
int DHTNEW::read()
{
if (_readDelay == 0)
{
_readDelay = DHTLIB_DHT22_READ_DELAY;
if (_type == 11) _readDelay = DHTLIB_DHT11_READ_DELAY;
}
if (_type != 0)
{
while (millis() - _lastRead < _readDelay)
{
if (!_waitForRead) return DHTLIB_WAITING_FOR_READ;
yield();
}
return _read();
}
_type = 22;
_wakeupDelay = DHTLIB_DHT_WAKEUP;
int rv = _read();
if (rv == DHTLIB_OK) return rv;
_type = 11;
_wakeupDelay = DHTLIB_DHT11_WAKEUP;
rv = _read();
if (rv == DHTLIB_OK) return rv;
_type = 0; // retry next time
return rv;
}
// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_BIT_SHIFT
// DHTLIB_ERROR_SENSOR_NOT_READY
// DHTLIB_ERROR_TIMEOUT_A
// DHTLIB_ERROR_TIMEOUT_B
// DHTLIB_ERROR_TIMEOUT_C
// DHTLIB_ERROR_TIMEOUT_D
int DHTNEW::_read()
{
// READ VALUES
int rv = _readSensor();
interrupts();
// Data-bus's free status is high voltage level.
pinMode(_dataPin, OUTPUT);
digitalWrite(_dataPin, HIGH);
_lastRead = millis();
if (rv != DHTLIB_OK)
{
if (_suppressError == false)
{
_humidity = DHTLIB_INVALID_VALUE;
_temperature = DHTLIB_INVALID_VALUE;
}
return rv; // propagate error value
}
if (_type == 22) // DHT22, DHT33, DHT44, compatible
{
_humidity = (_bits[0] * 256 + _bits[1]) * 0.1;
int16_t t = ((_bits[2] & 0x7F) * 256 + _bits[3]);
if (t == 0)
{
_temperature = 0.0; // prevent -0.0;
}
else
{
_temperature = t * 0.1;
if((_bits[2] & 0x80) == 0x80 )
{
_temperature = -_temperature;
}
}
}
else // if (_type == 11) // DHT11, DH12, compatible
{
_humidity = _bits[0] + _bits[1] * 0.1;
_temperature = _bits[2] + _bits[3] * 0.1;
}
// HEXDUMP DEBUG
/*
Serial.println();
// CHECKSUM
if (_bits[4] < 0x10) Serial.print(0);
Serial.print(_bits[4], HEX);
Serial.print(" ");
// TEMPERATURE
if (_bits[2] < 0x10) Serial.print(0);
Serial.print(_bits[2], HEX);
if (_bits[3] < 0x10) Serial.print(0);
Serial.print(_bits[3], HEX);
Serial.print(" ");
Serial.print(_temperature, 1);
Serial.print(" ");
// HUMIDITY
if (_bits[0] < 0x10) Serial.print(0);
Serial.print(_bits[0], HEX);
if (_bits[1] < 0x10) Serial.print(0);
Serial.print(_bits[1], HEX);
Serial.print(" ");
Serial.print(_humidity, 1);
*/
// TEST OUT OF RANGE
#ifdef DHTLIB_VALUE_OUT_OF_RANGE
if (_humidity > 100)
{
return DHTLIB_HUMIDITY_OUT_OF_RANGE;
}
if ((_temperature < -40) || (_temperature > 80))
{
return DHTLIB_TEMPERATURE_OUT_OF_RANGE;
}
#endif
_humidity = constrain(_humidity + _humOffset, 0, 100);
_temperature += _tempOffset;
// TEST CHECKSUM
uint8_t sum = _bits[0] + _bits[1] + _bits[2] + _bits[3];
if (_bits[4] != sum)
{
return DHTLIB_ERROR_CHECKSUM;
}
return DHTLIB_OK;
}
void DHTNEW::powerUp()
{
digitalWrite(_dataPin, HIGH);
// do a dummy read to sync the sensor
read();
};
void DHTNEW::powerDown()
{
digitalWrite(_dataPin, LOW);
}
/////////////////////////////////////////////////////
//
// PRIVATE
//
// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_BIT_SHIFT
// DHTLIB_ERROR_SENSOR_NOT_READY
// DHTLIB_ERROR_TIMEOUT_A
// DHTLIB_ERROR_TIMEOUT_B
// DHTLIB_ERROR_TIMEOUT_C
// DHTLIB_ERROR_TIMEOUT_D
int DHTNEW::_readSensor()
{
// INIT BUFFERVAR TO RECEIVE DATA
uint8_t mask = 0x80;
uint8_t idx = 0;
// EMPTY BUFFER
for (uint8_t i = 0; i < 5; i++) _bits[i] = 0;
// HANDLE PENDING IRQ
yield();
// REQUEST SAMPLE - SEND WAKEUP TO SENSOR
pinMode(_dataPin, OUTPUT);
digitalWrite(_dataPin, LOW);
// add 10% extra for timing inaccuracies in sensor.
delayMicroseconds(_wakeupDelay * 1100UL);
// HOST GIVES CONTROL TO SENSOR
digitalWrite(_dataPin, HIGH);
delayMicroseconds(2);
pinMode(_dataPin, INPUT_PULLUP);
// DISABLE INTERRUPTS when clock in the bits
if (_disableIRQ) { noInterrupts(); }
// DHT22
// SENSOR PULLS LOW after 20-40 us => if stays HIGH ==> device not ready
// timeout is 20 us less due to delay() above
// DHT11
// SENSOR PULLS LOW after 6000-10000 us
uint32_t WAITFORSENSOR = 50;
if (_type == 11) WAITFORSENSOR = 15000UL;
if (_waitFor(LOW, WAITFORSENSOR)) return DHTLIB_ERROR_SENSOR_NOT_READY;
// SENSOR STAYS LOW for ~80 us => or TIMEOUT
if (_waitFor(HIGH, 90)) return DHTLIB_ERROR_TIMEOUT_A;
// SENSOR STAYS HIGH for ~80 us => or TIMEOUT
if (_waitFor(LOW, 90)) return DHTLIB_ERROR_TIMEOUT_B;
// SENSOR HAS NOW SEND ACKNOWLEDGE ON WAKEUP
// NOW IT SENDS THE BITS
// READ THE OUTPUT - 40 BITS => 5 BYTES
for (uint8_t i = 40; i != 0; i--)
{
// EACH BIT START WITH ~50 us LOW
if (_waitFor(HIGH, 70)) return DHTLIB_ERROR_TIMEOUT_C;
// DURATION OF HIGH DETERMINES 0 or 1
// 26-28 us ==> 0
// 70 us ==> 1
uint32_t t = micros();
if (_waitFor(LOW, 90)) return DHTLIB_ERROR_TIMEOUT_D;
if ((micros() - t) > DHTLIB_BIT_THRESHOLD)
{
_bits[idx] |= mask;
}
// PREPARE FOR NEXT BIT
mask >>= 1;
if (mask == 0) // next byte?
{
mask = 0x80;
idx++;
}
}
// After 40 bits the sensor pulls the line LOW for 50 us
// No functional need to wait for this one
// if (_waitFor(HIGH, 60)) return DHTLIB_ERROR_TIMEOUT_E;
// CATCH RIGHTSHIFT BUG ESP (only 1 single bit shift)
// humidity is max 1000 = 0x03E8 for DHT22 and 0x6400 for DHT11
// so most significant bit may never be set.
if (_bits[0] & 0x80) return DHTLIB_ERROR_BIT_SHIFT;
return DHTLIB_OK;
}
// returns true if timeout has passed.
// returns false if timeout is not reached and state is seen.
bool DHTNEW::_waitFor(uint8_t state, uint32_t timeout)
{
uint32_t start = micros();
uint8_t count = 2;
while ((micros() - start) < timeout)
{
// delayMicroseconds(1); // less # reads ==> minimizes # glitch reads
if (digitalRead(_dataPin) == state)
{
count--;
if (count == 0) return false; // requested state seen count times
}
}
return true;
}
// -- END OF FILE --