2023-11-13 17:02:21 +01:00

575 lines
10 KiB
C++

//
// FILE: MCP23S08.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.2.1
// PURPOSE: Arduino library for SPI MCP23S08 8 channel port expander
// DATE: 2022-01-10
// URL: https://github.com/RobTillaart/MCP23S08
#include "MCP23S08.h"
// SOFTWARE SPI
MCP23S08::MCP23S08(uint8_t select, uint8_t dataIn, uint8_t dataOut, uint8_t clock, uint8_t address)
{
_address = (address << 1);
_select = select;
_dataIn = dataIn;
_dataOut = dataOut;
_clock = clock;
_error = MCP23S08_OK;
_hwSPI = false;
}
// HARDWARE SPI
MCP23S08::MCP23S08(uint8_t select, SPIClass* spi)
{
MCP23S08(select, 0x00, spi);
}
// HARDWARE SPI
MCP23S08::MCP23S08(uint8_t select, uint8_t address, SPIClass* spi)
{
_address = (address << 1);
_select = select;
_error = MCP23S08_OK;
_mySPI = spi;
_hwSPI = true;
}
bool MCP23S08::begin()
{
::pinMode(_select, OUTPUT);
::digitalWrite(_select, HIGH);
// 8 MHz - datasheet page 8
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
if (_hwSPI)
{
#if defined(ESP32)
if (_useHSPI) // HSPI
{
_mySPI = new SPIClass(HSPI);
_mySPI->end();
_mySPI->begin(14, 12, 13, _select); // CLK=14 MISO=12 MOSI=13
}
else // VSPI
{
_mySPI = new SPIClass(VSPI);
_mySPI->end();
_mySPI->begin(18, 19, 23, _select); // CLK=18 MISO=19 MOSI=23
}
#else // generic hardware SPI
_mySPI = &SPI;
_mySPI->end();
_mySPI->begin();
#endif
}
else
{
::pinMode(_dataIn, INPUT);
::pinMode(_dataOut, OUTPUT);
::pinMode(_clock, OUTPUT);
::digitalWrite(_dataOut, LOW);
::digitalWrite(_clock, LOW);
}
// check connected
if (! isConnected()) return false;
// disable address increment (datasheet P20
// SEQOP: Sequential Operation mode bit
// 1 = Sequential operation disabled, address pointer does not increment.
// 0 = Sequential operation enabled, address pointer increments.
if (! writeReg(MCP23S08_IOCR, MCP23S08_IOCR_SEQOP)) return false;
// Force INPUT_PULLUP
if (! writeReg(MCP23S08_PUR_A, 0xFF)) return false; // 0xFF == all UP
return true;
}
bool MCP23S08::isConnected()
{
_error = MCP23S08_OK;
return true;
}
uint8_t MCP23S08::getAddress()
{
return (_address >> 1);
}
///////////////////////////////////////////////////////////////////
//
// single pin interface
//
// pin = 0..7
// mode = INPUT, OUTPUT, INPUT_PULLUP (= same as INPUT)
bool MCP23S08::pinMode(uint8_t pin, uint8_t mode)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return false;
}
if ((mode != INPUT) && (mode != INPUT_PULLUP) && (mode != OUTPUT))
{
_error = MCP23S08_VALUE_ERROR;
return false;
}
uint8_t dataDirectionRegister = MCP23S08_DDR_A;
uint8_t val = readReg(dataDirectionRegister);
if (_error != MCP23S08_OK)
{
return false;
}
uint8_t mask = 1 << pin;
// only work with valid
if ((mode == INPUT) || (mode == INPUT_PULLUP))
{
val |= mask;
}
else if (mode == OUTPUT)
{
val &= ~mask;
}
// other values won't change val ....
writeReg(dataDirectionRegister, val);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
// pin = 0..7
// value = LOW, HIGH
bool MCP23S08::digitalWrite(uint8_t pin, uint8_t value)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return false;
}
uint8_t IOR = MCP23S08_GPIO_A;
uint8_t val = readReg(IOR);
uint8_t pre = val;
if (_error != MCP23S08_OK)
{
return false;
}
uint8_t mask = 1 << pin;
if (value)
{
val |= mask;
}
else
{
val &= ~mask;
}
// only write when changed.
if (pre != val)
{
writeReg(IOR, val);
if (_error != MCP23S08_OK)
{
return false;
}
}
return true;
}
uint8_t MCP23S08::digitalRead(uint8_t pin)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return MCP23S08_INVALID_READ;
}
uint8_t IOR = MCP23S08_GPIO_A;
uint8_t val = readReg(IOR);
if (_error != MCP23S08_OK)
{
return MCP23S08_INVALID_READ;
}
uint8_t mask = 1 << pin;
if (val & mask) return HIGH;
return LOW;
}
// pin = 0..7
// reversed = true or false
bool MCP23S08::setPolarity(uint8_t pin, bool reversed)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return false;
}
uint8_t inputPolarityRegister = MCP23S08_POL_A;
uint8_t val = readReg(inputPolarityRegister);
if (_error != MCP23S08_OK)
{
return false;
}
uint8_t mask = 1 << pin;
if (reversed)
{
val |= mask;
}
else
{
val &= ~mask;
}
writeReg(inputPolarityRegister, val);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
bool MCP23S08::getPolarity(uint8_t pin, bool &reversed)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return false;
}
uint8_t inputPolarityRegister = MCP23S08_POL_A;
uint8_t val = readReg(inputPolarityRegister);
if (_error != MCP23S08_OK)
{
return false;
}
uint8_t mask = 1 << pin;
reversed = (val & mask) > 0;
return true;
}
// pin = 0..7
// pullup = true or false
bool MCP23S08::setPullup(uint8_t pin, bool pullup)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return false;
}
uint8_t inputPullupRegister = MCP23S08_PUR_A;
uint8_t val = readReg(inputPullupRegister);
if (_error != MCP23S08_OK)
{
return false;
}
uint8_t mask = 1 << pin;
if (pullup)
{
val |= mask;
}
else
{
val &= ~mask;
}
writeReg(inputPullupRegister, val);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
bool MCP23S08::getPullup(uint8_t pin, bool &pullup)
{
if (pin > 7)
{
_error = MCP23S08_PIN_ERROR;
return false;
}
uint8_t inputPullupRegister = MCP23S08_PUR_A;
uint8_t val = readReg(inputPullupRegister);
if (_error != MCP23S08_OK)
{
return false;
}
uint8_t mask = 1 << pin;
pullup = (val & mask) > 0;
return true;
}
void MCP23S08::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
};
///////////////////////////////////////////////////////////////////
//
// 8 pins interface
//
// whole register at once
// value = 0..0xFF bit pattern
bool MCP23S08::pinMode8(uint8_t value)
{
writeReg(MCP23S08_DDR_A, value);
_error = MCP23S08_OK;
return true;
}
bool MCP23S08::write8(uint8_t value)
{
writeReg(MCP23S08_GPIO_A, value);
_error = MCP23S08_OK;
return true;
}
int MCP23S08::read8()
{
_error = MCP23S08_OK;
return readReg(MCP23S08_GPIO_A);
}
// mask = 0..0xFF bit pattern
bool MCP23S08::setPolarity8(uint8_t mask)
{
writeReg(MCP23S08_POL_A, mask);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
bool MCP23S08::getPolarity8(uint8_t &mask)
{
mask = readReg(MCP23S08_POL_A);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
// mask = 0..0xFF bit pattern
bool MCP23S08::setPullup8(uint8_t mask)
{
writeReg(MCP23S08_PUR_A, mask);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
bool MCP23S08::getPullup8(uint8_t &mask)
{
mask = readReg(MCP23S08_PUR_A);
if (_error != MCP23S08_OK)
{
return false;
}
return true;
}
int MCP23S08::lastError()
{
int e = _error;
_error = MCP23S08_OK; // reset error after read.
return e;
}
void MCP23S08::enableControlRegister(uint8_t mask)
{
uint8_t reg = readReg(MCP23S08_IOCR);
reg |= mask;
writeReg(MCP23S08_IOCR, reg);
}
void MCP23S08::disableControlRegister(uint8_t mask)
{
uint8_t reg = readReg(MCP23S08_IOCR);
reg &= ~mask;
writeReg(MCP23S08_IOCR, reg);
}
void MCP23S08::enableHardwareAddress()
{
enableControlRegister(MCP23S08_IOCR_HAEN);
}
void MCP23S08::disableHardwareAddress()
{
disableControlRegister(MCP23S08_IOCR_HAEN);
}
#if defined(ESP32)
void MCP23S08::selectHSPI()
{
_useHSPI = true;
}
void MCP23S08::selectVSPI()
{
_useHSPI = false;
}
bool MCP23S08::usesHSPI()
{
return _useHSPI;
}
bool MCP23S08::usesVSPI()
{
return !_useHSPI;
}
void MCP23S08::setGPIOpins(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t select)
{
_clock = clk;
_dataOut = mosi;
_dataIn = miso;
_select = select;
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
_mySPI->end(); // disable old SPI
_mySPI->begin(clk, miso, mosi, select); // enable new pins
}
#endif
////////////////////////////////////////////////////
//
// PRIVATE
//
// low level read / write masks
#define MCP23S08_WRITE_REG 0x40
#define MCP23S08_READ_REG 0x41
bool MCP23S08::writeReg(uint8_t reg, uint8_t value)
{
_error = MCP23S08_OK;
if (reg > MCP23S08_OLAT_A)
{
_error = MCP23S08_REGISTER_ERROR;
return false;
}
::digitalWrite(_select, LOW);
if (_hwSPI)
{
_mySPI->beginTransaction(_spi_settings);
// _address already shifted
_mySPI->transfer(MCP23S08_WRITE_REG | _address );
_mySPI->transfer(reg);
_mySPI->transfer(value);
_mySPI->endTransaction();
}
else
{
// _address already shifted
swSPI_transfer(MCP23S08_WRITE_REG | _address );
swSPI_transfer(reg);
swSPI_transfer(value);
}
::digitalWrite(_select, HIGH);
return true;
}
uint8_t MCP23S08::readReg(uint8_t reg)
{
uint8_t rv = 0;
_error = MCP23S08_OK;
if (reg > MCP23S08_OLAT_A)
{
_error = MCP23S08_REGISTER_ERROR;
return false;
}
::digitalWrite(_select, LOW);
if (_hwSPI)
{
_mySPI->beginTransaction(_spi_settings);
// _address already shifted
_mySPI->transfer(MCP23S08_READ_REG | _address ); // TODO OPTIMIZE n times
_mySPI->transfer(reg);
rv = _mySPI->transfer(0xFF);
_mySPI->endTransaction();
}
else
{
// _address already shifted
swSPI_transfer(MCP23S08_READ_REG | _address );
swSPI_transfer(reg);
rv = swSPI_transfer(0xFF);
}
::digitalWrite(_select, HIGH);
return rv;
}
uint8_t MCP23S08::swSPI_transfer(uint8_t value)
{
uint8_t clk = _clock;
uint8_t dao = _dataOut;
uint8_t dai = _dataIn;
uint8_t rv = 0;
for (uint8_t mask = 0x80; mask > 0; mask >>= 1)
{
::digitalWrite(dao, (value & mask) ? HIGH : LOW);
::digitalWrite(clk, HIGH);
if (::digitalRead(dai) == HIGH) rv |= mask;
::digitalWrite(clk, LOW);
}
return rv;
}
// -- END OF FILE --