GY-63_MS5611/libraries/ACS712/ACS712.cpp
2023-01-18 13:43:31 +01:00

442 lines
9.7 KiB
C++

//
// FILE: ACS712.cpp
// AUTHOR: Rob Tillaart, Pete Thompson
// VERSION: 0.3.5
// DATE: 2020-08-02
// PURPOSE: ACS712 library - current measurement
// URL: https://github.com/RobTillaart/ACS712
#include "ACS712.h"
// CONSTRUCTOR
ACS712::ACS712(uint8_t analogPin, float volts, uint16_t maxADC, float mVperAmpere)
{
_pin = analogPin;
_mVperAmpere = mVperAmpere;
_formFactor = ACS712_FF_SINUS;
_noisemV = ACS712_DEFAULT_NOISE; // 21mV according to datasheet
// set in setADC()
// keep it here until after experimental.
_maxADC = maxADC;
_mVperStep = 1000.0 * volts / maxADC; // 1x 1000 for V -> mV
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
_midPoint = maxADC / 2;
// default ADC is internal.
setADC(NULL, volts, maxADC);
}
// MEASUREMENTS
float ACS712::mA_peak2peak(float frequency, uint16_t cycles)
{
uint16_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
for (uint16_t i = 0; i < cycles; i++)
{
int minimum, maximum;
// Better than using midPoint
minimum = maximum = _analogRead(_pin);
// find minimum and maximum
uint32_t start = micros();
while (micros() - start < period) // UNO ~180 samples...
{
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
// determine extremes
if (value < minimum) minimum = value;
else if (value > maximum) maximum = value;
}
sum += (maximum - minimum);
}
float peak2peak = sum * _mAPerStep;
if (cycles > 1) peak2peak /= cycles;
return peak2peak;
}
float ACS712::mA_AC(float frequency, uint16_t cycles)
{
uint16_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
// remove float operation from loop.
uint16_t zeroLevel = round(_noisemV/_mVperStep);
for (uint16_t i = 0; i < cycles; i++)
{
uint16_t samples = 0;
uint16_t zeros = 0;
int _min, _max;
_min = _max = _analogRead(_pin);
// find minimum and maximum and count the zero-level "percentage"
uint32_t start = micros();
while (micros() - start < period) // UNO ~180 samples...
{
samples++;
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
// determine extremes
if (value < _min) _min = value;
else if (value > _max) _max = value;
// count zeros
if (abs(value - _midPoint) <= zeroLevel ) zeros++;
}
int peak2peak = _max - _min;
// automatic determine _formFactor / crest factor
float D = 0;
float FF = 0;
if (zeros > samples * 0.025) // more than 2% zero's
{
D = 1.0 - (1.0 * zeros) / samples; // % SAMPLES NONE ZERO
FF = sqrt(D) * _formFactor; // ASSUME NON ZERO PART ~ SINUS
}
else // # zeros is small => D --> 1 --> sqrt(D) --> 1
{
FF = _formFactor;
}
// value could be partially pre-calculated: C = 1000.0 * 0.5 * _mVperStep / _mVperAmpere;
// return 1000.0 * 0.5 * peak2peak * _mVperStep * _formFactor / _mVperAmpere);
sum += peak2peak * FF;
}
float mA = 0.5 * sum * _mAPerStep;
if (cycles > 1) mA /= cycles;
return mA;
}
float ACS712::mA_AC_sampling(float frequency, uint16_t cycles)
{
uint32_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
// float noiseLevel = _noisemV/_mVperStep;
for (uint16_t i = 0; i < cycles; i++)
{
uint16_t samples = 0;
float sumSquared = 0;
uint32_t start = micros();
while (micros() - start < period)
{
samples++;
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
float current = value - _midPoint;
sumSquared += (current * current);
// not adding noise squared might be more correct for small currents.
// if (abs(current) > noiseLevel)
// {
// sumSquared += (current * current);
// }
}
sum += sqrt(sumSquared / samples);
}
float mA = sum * _mAPerStep;
if (cycles > 1) mA /= cycles;
return mA;
}
float ACS712::mA_DC(uint16_t cycles)
{
// read at least twice to stabilize the ADC
_analogRead(_pin);
if (cycles == 0) cycles = 1;
float sum = 0;
for (uint16_t i = 0; i < cycles; i++)
{
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
sum += (value - _midPoint);
}
float mA = sum * _mAPerStep;
if (cycles > 1) mA /= cycles;
return mA;
}
// CALIBRATION MIDPOINT
uint16_t ACS712::setMidPoint(uint16_t midPoint)
{
if (midPoint <= _maxADC) _midPoint = (int) midPoint;
return _midPoint;
};
uint16_t ACS712::getMidPoint()
{
return _midPoint;
};
uint16_t ACS712::incMidPoint()
{
if (_midPoint < (int)(_maxADC)) _midPoint += 1;
return _midPoint;
};
uint16_t ACS712::decMidPoint()
{
if (_midPoint > 0) _midPoint -= 1;
return _midPoint;
};
// configure by sampling for 2 cycles of AC
// Also works for DC as long as no current flowing
// note this is blocking!
uint16_t ACS712::autoMidPoint(float frequency, uint16_t cycles)
{
uint16_t twoPeriods = round(2000000UL / frequency);
if (cycles == 0) cycles = 1;
uint32_t total = 0;
for (uint16_t i = 0; i < cycles; i++)
{
uint32_t subTotal = 0;
uint32_t samples = 0;
uint32_t start = micros();
while (micros() - start < twoPeriods)
{
uint16_t reading = _analogRead(_pin);
subTotal += reading;
samples++;
// Delaying prevents overflow
// since we'll perform a maximum of 40,000 reads @ 50 Hz.
delayMicroseconds(1);
}
total += (subTotal / samples);
}
_midPoint = total / cycles;
return _midPoint;
}
uint16_t ACS712::resetMidPoint()
{
_midPoint = _maxADC / 2;
return _midPoint;
};
// CALIBRATION FORM FACTOR
void ACS712::setFormFactor(float formFactor)
{
_formFactor = formFactor;
};
float ACS712::getFormFactor()
{
return _formFactor;
};
// CALIBRATION NOISE
// noise defaults 21 datasheet
void ACS712::setNoisemV(uint8_t noisemV)
{
_noisemV = noisemV;
};
uint8_t ACS712::getNoisemV()
{
return _noisemV;
};
float ACS712::mVNoiseLevel(float frequency, uint16_t cycles)
{
float mA = mA_peak2peak(frequency, cycles);
// divide by 2 as the level is half of the peak to peak range
return mA * _mVperAmpere * 0.001 / 2;
}
void ACS712::suppressNoise(bool flag)
{
_suppresNoise = flag;
}
// CALIBRATION mV PER AMP
// Adjusting resolution AC and DC
void ACS712::setmVperAmp(float mVperAmpere)
{
_mVperAmpere = mVperAmpere;
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
};
float ACS712::getmVperAmp()
{
return _mVperAmpere;
};
float ACS712::getmAPerStep()
{
return _mAPerStep;
};
float ACS712::getAmperePerStep()
{
return _mAPerStep * 0.001;
};
// FREQUENCY DETECTION
// uses oversampling and averaging to minimize variation
// blocks for substantial amount of time, depending on minimalFrequency
float ACS712::detectFrequency(float minimalFrequency)
{
int maximum = 0;
int minimum = 0;
maximum = minimum = _analogRead(_pin);
// determine maxima
uint32_t timeOut = round(1000000.0 / minimalFrequency);
uint32_t start = micros();
while (micros() - start < timeOut)
{
int value = _analogRead(_pin);
if (value > maximum) maximum = value;
if (value < minimum) minimum = value;
}
// calculate quarter points
// using quarter points is less noise prone than using one single midpoint
int Q1 = (3 * minimum + maximum ) / 4;
int Q3 = (minimum + 3 * maximum ) / 4;
// 10x passing Quantile points
// wait for the right moment to start
// to prevent endless loop a timeout is checked.
timeOut *= 10;
start = micros();
// casting to int to keep compiler happy.
while ((int(_analogRead(_pin)) > Q1) && ((micros() - start) < timeOut));
while ((int(_analogRead(_pin)) <= Q3) && ((micros() - start) < timeOut));
start = micros();
for (int i = 0; i < 10; i++)
{
while ((int(_analogRead(_pin)) > Q1) && ((micros() - start) < timeOut));
while ((int(_analogRead(_pin)) <= Q3) && ((micros() - start) < timeOut));
}
uint32_t stop = micros();
// calculate frequency
float wavelength = stop - start;
float frequency = 1e7 / wavelength;
if (_microsAdjust != 1.0) frequency *= _microsAdjust;
return frequency;
}
// timing for FREQUENCY DETECTION
void ACS712::setMicrosAdjust(float factor)
{
_microsAdjust = factor;
};
float ACS712::getMicrosAdjust()
{
return _microsAdjust;
};
// DEBUG
uint16_t ACS712::getMinimum(uint16_t milliSeconds)
{
uint16_t minimum = _analogRead(_pin);
// find minimum
uint32_t start = millis();
while (millis() - start < milliSeconds)
{
uint16_t value = _analogRead(_pin);
if (value < minimum) minimum = value;
}
return minimum;
}
uint16_t ACS712::getMaximum(uint16_t milliSeconds)
{
uint16_t maximum = _analogRead(_pin);
// find minimum
uint32_t start = millis();
while (millis() - start < milliSeconds)
{
uint16_t value = _analogRead(_pin);
if (value > maximum) maximum = value;
}
return maximum;
}
void ACS712::setADC(uint16_t (* f)(uint8_t), float volts, uint16_t maxADC)
{
_readADC = f;
_maxADC = maxADC;
_mVperStep = 1000.0 * volts / maxADC; // 1x 1000 for V -> mV
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
_midPoint = maxADC / 2;
}
//////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
uint16_t ACS712::_analogRead(uint8_t pin)
{
// if extern ADC is defined use it.
if (_readADC != NULL) return _readADC(pin);
return analogRead(pin);
}
// -- END OF FILE --