mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
283 lines
7.9 KiB
C++
283 lines
7.9 KiB
C++
#pragma once
|
|
//
|
|
// FILE: Statistic.h
|
|
// AUTHOR: Rob Tillaart
|
|
// modified at 0.3 by Gil Ross at physics dot org
|
|
// template version 1.0.0 by Glen Cornell
|
|
// VERSION: 1.0.6
|
|
// PURPOSE: Recursive Statistical library for Arduino
|
|
// HISTORY: See CHANGELOG.md
|
|
//
|
|
// NOTE: 2011-01-07 Gill Ross
|
|
// Rob Tillaart's Statistic library uses one-pass of the data (allowing
|
|
// each value to be discarded), but expands the Sum of Squares Differences to
|
|
// difference the Sum of Squares and the Average Squared. This is susceptible
|
|
// to bit length precision errors with the float type (only 5 or 6 digits
|
|
// absolute precision) so for long runs and high ratios of
|
|
// the average value to standard deviation the estimate of the
|
|
// standard error (deviation) becomes the difference of two large
|
|
// numbers and will tend to zero.
|
|
//
|
|
// For small numbers of iterations and small Average/SE the original code is
|
|
// likely to work fine.
|
|
// It should also be recognised that for very large samples, questions
|
|
// of stability of the sample assume greater importance than the
|
|
// correctness of the asymptotic estimators.
|
|
//
|
|
// This recursive algorithm, which takes slightly more computation per
|
|
// iteration is numerically stable.
|
|
// It updates the number, mean, max, min and SumOfSquaresDiff each step to
|
|
// deliver max min average, population standard error (standard deviation) and
|
|
// unbiased SE.
|
|
|
|
// Toolchains for some platforms don't have the stdc++ library, so
|
|
// we'll make substitutions for features that we use. If your
|
|
// platform isn't specified here and fails to compile, then you can
|
|
// explicitly override the HAVE_STDCXX_TYPE_TRAITS, HAVE_STDCXX_CMATH,
|
|
// and HAVE_STDCXX_CSTDINT feature macros in your build environment.
|
|
|
|
|
|
#define STATISTIC_LIB_VERSION (F("1.0.6"))
|
|
|
|
|
|
#if defined(__AVR__)
|
|
#define HAVE_STDCXX_TYPE_TRAITS 0
|
|
#define HAVE_STDCXX_CMATH 0
|
|
#define HAVE_STDCXX_CSTDINT 0
|
|
#else
|
|
#ifndef HAVE_STDCXX_TYPE_TRAITS
|
|
#define HAVE_STDCXX_TYPE_TRAITS 1
|
|
#endif
|
|
#ifndef HAVE_STDCXX_CMATH
|
|
#define HAVE_STDCXX_CMATH 1
|
|
#endif
|
|
#ifndef HAVE_STDCXX_CSTDINT
|
|
#define HAVE_STDCXX_CSTDINT 1
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#if HAVE_STDCXX_TYPE_TRAITS || defined(_GLIBCXX_TYPE_TRAITS)
|
|
#include <type_traits>
|
|
#else
|
|
namespace std {
|
|
// substitute for std::conditional if not in your tool chain
|
|
template<bool B, class T, class F>
|
|
struct conditional { typedef T type; };
|
|
template<class T, class F>
|
|
struct conditional<false, T, F> { typedef F type; };
|
|
};
|
|
#endif /* HAVE_STDCXX_TYPE_TRAITS */
|
|
|
|
|
|
#if HAVE_STDCXX_CMATH || defined(_GLIBCXX_CMATH)
|
|
#include <cmath>
|
|
// substitute for std::sqrtf function, patch for issue #13
|
|
#undef sqrtf
|
|
namespace std {
|
|
inline float sqrtf(float n) { return __builtin_sqrtf(n); }
|
|
};
|
|
#else
|
|
#include <math.h>
|
|
// substitute for std::sqrt functions if not in your tool chain
|
|
#undef sqrt
|
|
namespace std {
|
|
inline float sqrt(float n) { return __builtin_sqrtf(n); }
|
|
inline double sqrt(double n) { return __builtin_sqrt(n); }
|
|
inline long double sqrt(long double n) { return __builtin_sqrtl(n); }
|
|
};
|
|
#endif /* HAVE_STDCXX_CMATH */
|
|
|
|
|
|
#if HAVE_STDCXX_CSTDINT || defined(_GLIBCXX_CSTDINT)
|
|
#include <cstdint>
|
|
#else
|
|
#include <stdint.h> // uint32_t, etc.
|
|
#endif /* HAVE_STDCXX_CSTDINT */
|
|
|
|
|
|
#if HAVE_STDCXX_LIMITS || defined(_GLIBCXX_NUMERIC_LIMITS)
|
|
#include <limits>
|
|
#else
|
|
namespace std {
|
|
template<typename T>
|
|
struct numeric_limits {
|
|
static constexpr T
|
|
quiet_NaN() { return T(); }
|
|
};
|
|
template<>
|
|
struct numeric_limits<float> {
|
|
static constexpr float
|
|
quiet_NaN() { return __builtin_nanf(""); }
|
|
};
|
|
template<>
|
|
struct numeric_limits<double> {
|
|
static constexpr double
|
|
quiet_NaN() { return __builtin_nan(""); }
|
|
};
|
|
template<>
|
|
struct numeric_limits<long double> {
|
|
static constexpr long double
|
|
quiet_NaN() { return __builtin_nanl(""); }
|
|
};
|
|
};
|
|
#endif /* HAVE_STDCXX_LIMITS */
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// STATISTICS CLASS
|
|
//
|
|
|
|
namespace statistic {
|
|
|
|
template <typename T = float, typename C = uint32_t, bool _useStdDev = true>
|
|
class Statistic
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef C count_type;
|
|
|
|
static constexpr value_type NaN { std::numeric_limits<value_type>::quiet_NaN() };
|
|
|
|
Statistic() = default;
|
|
|
|
|
|
void clear() {
|
|
_cnt = 0;
|
|
_sum = 0; // NaN;
|
|
_min = 0; // NaN;
|
|
_max = 0; // NaN;
|
|
_extra.clear();
|
|
// NOTE: _extra "guards" the conditional code e.g. ssqdiff
|
|
// NOTE: ssqdiff = not _ssq but sum of square differences
|
|
// which is SUM(from i = 1 to N) of f(i)-_ave_N)**2
|
|
}
|
|
|
|
|
|
// returns value actually added
|
|
value_type add(const value_type value) {
|
|
value_type previousSum = _sum;
|
|
if (_cnt == 0)
|
|
{
|
|
_min = value;
|
|
_max = value;
|
|
} else {
|
|
if (value < _min) _min = value;
|
|
else if (value > _max) _max = value;
|
|
}
|
|
_sum += value;
|
|
_cnt++;
|
|
|
|
if (_useStdDev && (_cnt > 1))
|
|
{
|
|
value_type _store = (_sum / _cnt - value);
|
|
_extra.ssqdif(_extra.ssqdif() + _cnt * _store * _store / (_cnt - 1));
|
|
|
|
// NOTE: pre 1.0.0 code
|
|
// ~10% faster but limits the amount of samples to 65K as _cnt*_cnt overflows
|
|
// value_type _store = _sum - _cnt * value;
|
|
// _ssqdif = _ssqdif + _store * _store / (_cnt*_cnt - _cnt);
|
|
//
|
|
// solution: TODO verify
|
|
// _ssqdif = _ssqdif + (_store * _store / _cnt) / (_cnt - 1);
|
|
}
|
|
return _sum - previousSum;
|
|
}
|
|
|
|
|
|
// returns the number of values added
|
|
count_type count() const { return _cnt; }; // zero if count == zero
|
|
value_type sum() const { return _sum; }; // zero if count == zero
|
|
value_type minimum() const { return _min; }; // zero if count == zero
|
|
value_type maximum() const { return _max; }; // zero if count == zero
|
|
value_type range() const { return _max - _min; }; // zero if count == zero
|
|
value_type middle() const
|
|
{
|
|
// prevent over- or underflow if value_type is an int type
|
|
double mid = _max * 0.5 + _min * 0.5;
|
|
return (value_type) mid;
|
|
}; // zero if count == zero
|
|
|
|
|
|
// NAN if count == zero
|
|
value_type average() const {
|
|
if (_cnt == 0) return NaN; // prevent DIV0 error
|
|
return _sum / _cnt;
|
|
}
|
|
|
|
|
|
// useStdDev must be true to use next three
|
|
// all return NAN if count == zero
|
|
value_type variance() const {
|
|
if (!_useStdDev) return NaN;
|
|
if (_cnt == 0) return NaN; // prevent DIV0 error
|
|
return _extra.ssqdif() / _cnt;
|
|
}
|
|
|
|
|
|
// Population standard deviation
|
|
value_type pop_stdev() const {
|
|
if (!_useStdDev) return NaN;
|
|
if (_cnt == 0) return NaN; // prevent DIV0 error
|
|
return std::sqrt( _extra.ssqdif() / _cnt);
|
|
}
|
|
|
|
|
|
value_type unbiased_stdev() const {
|
|
if (!_useStdDev) return NaN;
|
|
if (_cnt < 2) return NaN; // prevent DIV0 error
|
|
return std::sqrt( _extra.ssqdif() / (_cnt - 1));
|
|
}
|
|
|
|
|
|
// deprecated methods:
|
|
Statistic(bool) {
|
|
} __attribute__ ((deprecated ("use default constructor instead")));
|
|
void clear(bool) {
|
|
clear();
|
|
} __attribute__ ((deprecated ("use Statistic::clear(void) instead")));
|
|
|
|
|
|
protected:
|
|
count_type _cnt { 0 };
|
|
value_type _sum { 0.0 }; // NaN;
|
|
value_type _min { 0.0 }; // NaN;
|
|
value_type _max { 0.0 }; // NaN;
|
|
|
|
|
|
// Conditionally compile to reduce dead code if not used
|
|
struct Empty {
|
|
void clear() { }
|
|
value_type ssqdif() const { return NaN; }
|
|
void ssqdif(value_type v) { }
|
|
};
|
|
|
|
|
|
struct StdDev {
|
|
value_type _ssqdif { 0.0 }; // sum of squares difference
|
|
void clear() { _ssqdif = 0.0; }
|
|
value_type ssqdif() const { return _ssqdif; }
|
|
void ssqdif(value_type v) { _ssqdif = v; }
|
|
};
|
|
|
|
|
|
typename std::conditional<_useStdDev, StdDev, Empty>::type _extra;
|
|
};
|
|
|
|
} // namespace statistic
|
|
|
|
|
|
// This typedef maintains backwards API compatibility with library
|
|
// versions <= 0.4.4.
|
|
typedef statistic::Statistic<float, uint32_t, true> Statistic;
|
|
|
|
|
|
// NOTE: Do not issue 'using statistic;' in your code because the
|
|
// compiler will not be able to distinguish between the template
|
|
// '::Statistic' and the typedef 'statistic::Statistic'
|
|
|
|
|
|
// -- END OF FILE --
|
|
|