GY-63_MS5611/libraries/MCP_DAC/MCP_DAC.cpp
2023-11-13 16:59:44 +01:00

533 lines
9.5 KiB
C++

//
// FILE: MCP_DAC.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.2.1
// DATE: 2021-02-03
// PURPOSE: Arduino library for MCP_DAC
// URL: https://github.com/RobTillaart/MCP_DAC
#include "MCP_DAC.h"
#if defined (ARDUINO_ARCH_RP2040)
MCP_DAC::MCP_DAC(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI)
#else
MCP_DAC::MCP_DAC(uint8_t dataOut, uint8_t clock, SPIClass *inSPI)
#endif
{
mySPI = inSPI;
_dataOut = dataOut;
_clock = clock;
_select = 0;
_hwSPI = (dataOut == 255) || (clock == 255);
_channels = 1;
_maxValue = 255;
reset();
}
void MCP_DAC::reset()
{
_gain = 1;
_value[0] = 0;
_value[1] = 0;
_buffered = false;
_active = true;
}
void MCP_DAC::begin(uint8_t select)
{
_select = select;
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
if (_hwSPI)
{
#if defined(ESP32)
if (_useHSPI) // HSPI
{
mySPI = new SPIClass(HSPI);
mySPI->end();
mySPI->begin(14, 12, 13, select); // CLK=14 MISO=12 MOSI=13
}
else // VSPI
{
mySPI = new SPIClass(VSPI);
mySPI->end();
mySPI->begin(18, 19, 23, select); // CLK=18 MISO=19 MOSI=23
}
#else // generic hardware SPI
mySPI->end();
mySPI->begin();
#endif
}
else // software SPI
{
pinMode(_dataOut, OUTPUT);
pinMode(_clock, OUTPUT);
digitalWrite(_dataOut, LOW);
digitalWrite(_clock, LOW);
}
}
uint8_t MCP_DAC::channels()
{
return _channels;
}
uint16_t MCP_DAC::maxValue()
{
return _maxValue;
}
#if defined(ESP32) or defined(ARDUINO_ARCH_RP2040)
void MCP_DAC::setGPIOpins(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t select)
{
_clock = clk;
_dataOut = mosi;
_select = select;
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
mySPI->end(); // disable SPI
#if defined(ESP32)
mySPI->begin(clk, miso, mosi, select);
#elif defined(ARDUINO_ARCH_RP2040)
mySPI->setCS(select);
mySPI->setSCK(clk);
mySPI->setTX(mosi);
mySPI->begin();
#endif
}
#endif
bool MCP_DAC::setGain(uint8_t gain)
{
if ((0 == gain) || (gain > 2)) return false;
_gain = gain;
return true;
}
uint8_t MCP_DAC::getGain()
{
return _gain;
}
bool MCP_DAC::analogWrite(uint16_t value, uint8_t channel)
{
if (channel >= _channels) return false;
// CONSTRAIN VALUE
uint16_t _val = value;
if (_val > _maxValue) _val = _maxValue;
_value[channel] = value;
// PREPARING THE DATA TRANSFER
uint16_t data = 0x1000;
if (channel == 1) data |= 0x8000;
if (_buffered) data |= 0x4000;
if (_gain == 1) data |= 0x2000;
if (_maxValue == 4095) data |= _val;
else if (_maxValue == 1023) data |= (_val << 2);
else data |= (_val << 4);
transfer(data);
return true;
}
uint16_t MCP_DAC::lastValue(uint8_t channel)
{
return _value[channel];
}
void MCP_DAC::fastWriteA(uint16_t value)
{
transfer(0x3000 | value);
}
void MCP_DAC::fastWriteB(uint16_t value)
{
transfer(0xB000 | value);
}
bool MCP_DAC::increment(uint8_t channel)
{
if (channel >= _channels) return false;
if (_value[channel] == _maxValue) return false;
return analogWrite(_value[channel] + 1, channel);
}
bool MCP_DAC::decrement(uint8_t channel)
{
if (channel >= _channels) return false;
if (_value[channel] == 0) return false;
return analogWrite(_value[channel] - 1, channel);
}
void MCP_DAC::setPercentage(float perc, uint8_t channel)
{
if (perc < 0) perc = 0;
if (perc > 100) perc = 100;
analogWrite((0.01 * perc * _maxValue), channel);
}
float MCP_DAC::getPercentage(uint8_t channel)
{
return (_value[channel] * 100.0) / _maxValue;
}
void MCP_DAC::setLatchPin(uint8_t latchPin)
{
_latchPin = latchPin;
pinMode(_latchPin, OUTPUT);
digitalWrite(_latchPin, HIGH);
}
void MCP_DAC::triggerLatch()
{
if (_latchPin != 255)
{
digitalWrite(_latchPin, LOW);
// delay needed == 100 ns - Page 7
// on "slow" devices the next delay can be commented
delayMicroseconds(1);
digitalWrite(_latchPin, HIGH);
}
}
void MCP_DAC::shutDown()
{
_active = false;
transfer(0x0000); // a write will reset the values.
}
bool MCP_DAC::isActive()
{
return _active;
}
void MCP_DAC::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
};
uint32_t MCP_DAC::getSPIspeed()
{
return _SPIspeed;
}
void MCP_DAC::setBufferedMode(bool mode)
{
_buffered = mode;
}
bool MCP_DAC::getBufferedMode()
{
return _buffered;
}
bool MCP_DAC::usesHWSPI()
{
return _hwSPI;
}
#if defined(ESP32)
void MCP_DAC::selectHSPI()
{
_useHSPI = true;
}
void MCP_DAC::selectVSPI()
{
_useHSPI = false;
}
bool MCP_DAC::usesHSPI()
{
return _useHSPI;
}
bool MCP_DAC::usesVSPI()
{
return !_useHSPI;
}
#endif
//////////////////////////////////////////////////////////////////
//
// PROTECTED
//
void MCP_DAC::transfer(uint16_t data)
{
// DATA TRANSFER
digitalWrite(_select, LOW);
if (_hwSPI)
{
// mySPI->beginTransaction(SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0));
mySPI->beginTransaction(_spi_settings);
mySPI->transfer((uint8_t)(data >> 8));
mySPI->transfer((uint8_t)(data & 0xFF));
mySPI->endTransaction();
}
else // Software SPI
{
swSPI_transfer((uint8_t)(data >> 8));
swSPI_transfer((uint8_t)(data & 0xFF));
}
digitalWrite(_select, HIGH);
}
// MSBFIRST
uint8_t MCP_DAC::swSPI_transfer(uint8_t val)
{
uint8_t clk = _clock;
uint8_t dao = _dataOut;
for (uint8_t mask = 0x80; mask; mask >>= 1)
{
digitalWrite(dao, (val & mask));
digitalWrite(clk, HIGH);
digitalWrite(clk, LOW);
}
return 0;
}
#if defined(ARDUINO_ARCH_RP2040)
/////////////////////////////////////////////////////////////////////////////
//
// MCP4800 series
//
MCP4801::MCP4801(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 255;
};
MCP4802::MCP4802(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 255;
};
MCP4811::MCP4811(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 1023;
};
MCP4812::MCP4812(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 1023;
};
MCP4821::MCP4821(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 4095;
};
MCP4822::MCP4822(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 4095;
};
/////////////////////////////////////////////////////////////////////////////
//
// MCP4900 series
//
MCP4901::MCP4901(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 255;
};
MCP4902::MCP4902(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 255;
};
MCP4911::MCP4911(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 1023;
};
MCP4912::MCP4912(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 1023;
};
MCP4921::MCP4921(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 4095;
};
MCP4922::MCP4922(uint8_t dataOut, uint8_t clock, SPIClassRP2040 *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 4095;
};
#else
/////////////////////////////////////////////////////////////////////////////
//
// MCP4800 series
//
MCP4801::MCP4801(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 255;
};
MCP4802::MCP4802(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 255;
};
MCP4811::MCP4811(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 1023;
};
MCP4812::MCP4812(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 1023;
};
MCP4821::MCP4821(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 4095;
};
MCP4822::MCP4822(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 4095;
};
/////////////////////////////////////////////////////////////////////////////
//
// MCP4900 series
//
MCP4901::MCP4901(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 255;
};
MCP4902::MCP4902(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 255;
};
MCP4911::MCP4911(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 1023;
};
MCP4912::MCP4912(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 1023;
};
MCP4921::MCP4921(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 1;
_maxValue = 4095;
};
MCP4922::MCP4922(uint8_t dataOut, uint8_t clock, SPIClass *inSPI) : MCP_DAC(dataOut, clock, inSPI)
{
_channels = 2;
_maxValue = 4095;
};
#endif
// -- END OF FILE --