GY-63_MS5611/libraries/I2C_EEPROM/I2C_eeprom.cpp
2024-03-28 10:50:48 +01:00

731 lines
17 KiB
C++

//
// FILE: I2C_eeprom.cpp
// AUTHOR: Rob Tillaart
// VERSION: 1.8.3
// PURPOSE: Arduino Library for external I2C EEPROM 24LC256 et al.
// URL: https://github.com/RobTillaart/I2C_EEPROM.git
#include "I2C_eeprom.h"
// Not used directly
#define I2C_PAGESIZE_24LC512 128
#define I2C_PAGESIZE_24LC256 64
#define I2C_PAGESIZE_24LC128 64
#define I2C_PAGESIZE_24LC64 32
#define I2C_PAGESIZE_24LC32 32
#define I2C_PAGESIZE_24LC16 16
#define I2C_PAGESIZE_24LC08 16
#define I2C_PAGESIZE_24LC04 16
#define I2C_PAGESIZE_24LC02 8
#define I2C_PAGESIZE_24LC01 8
// I2C buffer needs max 2 bytes for EEPROM address
// 1 byte for EEPROM register address is available in transmit buffer
#if defined(ESP32) || defined(ESP8266) || defined(PICO_RP2040)
#define I2C_BUFFERSIZE 128
#else
#define I2C_BUFFERSIZE 30 // AVR, STM
#endif
////////////////////////////////////////////////////////////////////
//
// PUBLIC FUNCTIONS
//
I2C_eeprom::I2C_eeprom(const uint8_t deviceAddress, TwoWire * wire) :
I2C_eeprom(deviceAddress, I2C_PAGESIZE_24LC256, wire)
{
}
I2C_eeprom::I2C_eeprom(const uint8_t deviceAddress, const uint32_t deviceSize, TwoWire * wire)
{
_deviceAddress = deviceAddress;
_deviceSize = setDeviceSize(deviceSize);
_pageSize = getPageSize(_deviceSize);
_wire = wire;
// Chips 16 Kbit (2048 Bytes) or smaller only have one-word addresses.
this->_isAddressSizeTwoWords = deviceSize > I2C_DEVICESIZE_24LC16;
}
bool I2C_eeprom::begin(int8_t writeProtectPin)
{
// if (_wire == 0) SPRNL("zero"); // test #48
_lastWrite = 0;
_writeProtectPin = writeProtectPin;
if (_writeProtectPin >= 0)
{
pinMode(_writeProtectPin, OUTPUT);
preventWrite();
}
return isConnected();
}
bool I2C_eeprom::isConnected()
{
_wire->beginTransmission(_deviceAddress);
return (_wire->endTransmission() == 0);
}
uint8_t I2C_eeprom::getAddress()
{
return _deviceAddress;
}
/////////////////////////////////////////////////////////////
//
// WRITE SECTION
//
// returns I2C status, 0 = OK
int I2C_eeprom::writeByte(const uint16_t memoryAddress, const uint8_t data)
{
int rv = _WriteBlock(memoryAddress, &data, 1);
return rv;
}
// returns I2C status, 0 = OK
int I2C_eeprom::setBlock(const uint16_t memoryAddress, const uint8_t data, const uint16_t length)
{
uint8_t buffer[I2C_BUFFERSIZE];
for (uint8_t i = 0; i < I2C_BUFFERSIZE; i++)
{
buffer[i] = data;
}
int rv = _pageBlock(memoryAddress, buffer, length, false);
return rv;
}
// returns I2C status, 0 = OK
int I2C_eeprom::writeBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length)
{
int rv = _pageBlock(memoryAddress, buffer, length, true);
return rv;
}
/////////////////////////////////////////////////////////////
//
// READ SECTION
//
// returns the value stored in memoryAddress
uint8_t I2C_eeprom::readByte(const uint16_t memoryAddress)
{
uint8_t rdata;
_ReadBlock(memoryAddress, &rdata, 1);
return rdata;
}
// returns bytes read.
uint16_t I2C_eeprom::readBlock(const uint16_t memoryAddress, uint8_t * buffer, const uint16_t length)
{
uint16_t addr = memoryAddress;
uint16_t len = length;
uint16_t rv = 0;
while (len > 0)
{
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
rv += _ReadBlock(addr, buffer, cnt);
addr += cnt;
buffer += cnt;
len -= cnt;
}
return rv;
}
// returns true or false.
bool I2C_eeprom::verifyBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length)
{
uint16_t addr = memoryAddress;
uint16_t len = length;
while (len > 0)
{
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
if (_verifyBlock(addr, buffer, cnt) == false)
{
return false;
}
addr += cnt;
buffer += cnt;
len -= cnt;
}
return true;
}
/////////////////////////////////////////////////////////////
//
// UPDATE SECTION
//
// returns 0 == OK
int I2C_eeprom::updateByte(const uint16_t memoryAddress, const uint8_t data)
{
if (data == readByte(memoryAddress)) return 0;
return writeByte(memoryAddress, data);
}
// returns bytes written.
uint16_t I2C_eeprom::updateBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length)
{
uint16_t addr = memoryAddress;
uint16_t len = length;
uint16_t rv = 0;
while (len > 0)
{
uint8_t buf[I2C_BUFFERSIZE];
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
rv += _ReadBlock(addr, buf, cnt);
if (memcmp(buffer, buf, cnt) != 0)
{
_pageBlock(addr, buffer, cnt, true);
}
addr += cnt;
buffer += cnt;
len -= cnt;
}
return rv;
}
/////////////////////////////////////////////////////////////
//
// VERIFY SECTION
//
// return false if write or verify failed.
bool I2C_eeprom::writeByteVerify(const uint16_t memoryAddress, const uint8_t value)
{
if (writeByte(memoryAddress, value) != 0 ) return false;
uint8_t data = readByte(memoryAddress);
return (data == value);
}
// return false if write or verify failed.
bool I2C_eeprom::writeBlockVerify(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length)
{
if (writeBlock(memoryAddress, buffer, length) != 0) return false;
return verifyBlock(memoryAddress, buffer, length);
}
// return false if write or verify failed.
bool I2C_eeprom::setBlockVerify(const uint16_t memoryAddress, const uint8_t value, const uint16_t length)
{
if (setBlock(memoryAddress, value, length) != 0) return false;
uint8_t * data = (uint8_t *) malloc(length);
if (data == NULL) return false;
if (readBlock(memoryAddress, data, length) != length) return false;
for (uint16_t i = 0; i < length; i++)
{
if (data[i] != value)
{
free(data);
return false;
}
}
free(data);
return true;
}
// return false if write or verify failed.
bool I2C_eeprom::updateByteVerify(const uint16_t memoryAddress, const uint8_t value)
{
if (updateByte(memoryAddress, value) != 0 ) return false;
uint8_t data = readByte(memoryAddress);
return (data == value);
}
// return false if write or verify failed.
bool I2C_eeprom::updateBlockVerify(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length)
{
if (updateBlock(memoryAddress, buffer, length) != length) return false;
return verifyBlock(memoryAddress, buffer, length);
}
/////////////////////////////////////////////////////////////
//
// METADATA SECTION
//
// returns size in bytes
// returns 0 if not connected
//
// tested for
// 2 byte address
// 24LC512 64 KB YES
// 24LC256 32 KB YES
// 24LC128 16 KB YES
// 24LC64 8 KB YES
// 24LC32 4 KB YES* - no hardware test, address scheme identical to 24LC64.
//
// 1 byte address (uses part of deviceAddress byte)
// 24LC16 2 KB YES
// 24LC08 1 KB YES
// 24LC04 512 B YES
// 24LC02 256 B YES
// 24LC01 128 B YES
uint32_t I2C_eeprom::determineSize(const bool debug)
{
// try to read a byte to see if connected
if (! isConnected()) return 0;
uint8_t patAA = 0xAA;
uint8_t pat55 = 0x55;
for (uint32_t size = 128; size <= 65536; size *= 2)
{
bool folded = false;
// store old values
bool addressSize = _isAddressSizeTwoWords;
_isAddressSizeTwoWords = size > I2C_DEVICESIZE_24LC16; // 2048
uint8_t buf = readByte(size);
// test folding
uint8_t cnt = 0;
writeByte(size, pat55);
if (readByte(0) == pat55) cnt++;
writeByte(size, patAA);
if (readByte(0) == patAA) cnt++;
folded = (cnt == 2);
if (debug)
{
SPRNH(size, HEX);
SPRN('\t');
SPRNLH(readByte(size), HEX);
}
// restore old values
writeByte(size, buf);
_isAddressSizeTwoWords = addressSize;
if (folded) return size;
}
return 0;
}
// new 1.8.1 #61
// updated 1.8.2 #63
//
// Returns:
// 0 if device size cannot be determined or device is not online
// 1 if device has default bytes in first dataFirstBytes bytes [0-BUFSIZE]
// Write some dataFirstBytes to the first bytes and retry or use the determineSize method
// 2 if device has all the same bytes in first dataFirstBytes bytes [0-BUFSIZE]
// Write some random dataFirstBytes to the first bytes and retry or use the determineSize method
// >= 128 Device size in bytes
uint32_t I2C_eeprom::determineSizeNoWrite()
{
#define BUFSIZE (32)
// try to read a byte to see if connected
if (!isConnected()) return 0;
bool addressSize = _isAddressSizeTwoWords;
_isAddressSizeTwoWords = true; //Otherwise reading large EEPROMS fails
bool isModifiedFirstSector = false;
bool dataIsDifferent = false;
byte dataFirstBytes[BUFSIZE];
byte dataMatch[BUFSIZE];
readBlock(0, dataFirstBytes, BUFSIZE);
for (uint8_t pos = 0; pos < BUFSIZE; pos++)
{
if (dataIsDifferent || pos == 0)
{
//ignore futher comparison if dataFirstBytes is not the same in buffer
//Ignore first byte
}
else if (dataFirstBytes[pos - 1] != dataFirstBytes[pos])
{
dataIsDifferent = true;
}
if (dataFirstBytes[pos] != 0xFF && dataFirstBytes[pos] != 0x00)
{
//Default dataFirstBytes value is 0xFF or 0x00
isModifiedFirstSector = true;
}
if (dataIsDifferent && isModifiedFirstSector)
break;
}
if (!isModifiedFirstSector)
{
//Cannot determine diff, at least one of the first bytes within 0 - len [BUFSIZE] needs to be changed.
//to something other than 0x00 and 0xFF
_isAddressSizeTwoWords = addressSize;
return 1;
}
if (!dataIsDifferent)
{
//Data in first bytes within 0 - len [BUFSIZE] are all the same.
_isAddressSizeTwoWords = addressSize;
return 2;
}
//Read from larges to smallest size
for (uint32_t size = 32768; size >= 64; size /= 2)
{
_isAddressSizeTwoWords = (size >= I2C_DEVICESIZE_24LC16); // == 2048
// Try to read last byte of the block, should return length of 0 when fails for single byte devices
// Will return the same dataFirstBytes as initialy read on other devices as the datapointer could not be moved to the requested position
delay(2);
uint16_t bSize = readBlock(size, dataMatch, BUFSIZE);
if (bSize == BUFSIZE && memcmp(dataFirstBytes, dataMatch, BUFSIZE) != 0)
{
//Read is perfomed just over size (size + BUFSIZE), this will only work for devices with mem > size; therefore return size * 2
_isAddressSizeTwoWords = addressSize;
return size * 2;
}
}
_isAddressSizeTwoWords = addressSize;
return 0;
}
uint32_t I2C_eeprom::getDeviceSize()
{
return _deviceSize;
}
uint8_t I2C_eeprom::getPageSize()
{
return _pageSize;
}
uint8_t I2C_eeprom::getPageSize(uint32_t deviceSize)
{
// determine page size from device size
// based on Microchip 24LCXX data sheets.
if (deviceSize <= I2C_DEVICESIZE_24LC02) return 8;
if (deviceSize <= I2C_DEVICESIZE_24LC16) return 16;
if (deviceSize <= I2C_DEVICESIZE_24LC64) return 32;
if (deviceSize <= I2C_DEVICESIZE_24LC256) return 64;
// I2C_DEVICESIZE_24LC512
return 128;
}
uint32_t I2C_eeprom::getLastWrite()
{
return _lastWrite;
}
uint32_t I2C_eeprom::setDeviceSize(uint32_t deviceSize)
{
uint32_t size = 128;
// force power of 2.
while ((size <= 65536) && ( size <= deviceSize))
{
_deviceSize = size;
size *= 2;
}
// Chips 16 Kbit (2048 Bytes) or smaller only have one-word addresses.
this->_isAddressSizeTwoWords = _deviceSize > I2C_DEVICESIZE_24LC16;
return _deviceSize;
}
uint8_t I2C_eeprom::setPageSize(uint8_t pageSize)
{
// force power of 2.
if (pageSize >= 128) {
_pageSize = 128;
}
else if (pageSize >= 64) {
_pageSize = 64;
}
else if (pageSize >= 32) {
_pageSize = 32;
}
else if (pageSize >= 16) {
_pageSize = 16;
}
else {
_pageSize = 8;
}
return _pageSize;
}
void I2C_eeprom::setExtraWriteCycleTime(uint8_t ms)
{
_extraTWR = ms;
}
uint8_t I2C_eeprom::getExtraWriteCycleTime()
{
return _extraTWR;
}
//
// WRITEPROTECT
//
bool I2C_eeprom::hasWriteProtectPin()
{
return (_writeProtectPin >= 0);
}
void I2C_eeprom::allowWrite()
{
if (hasWriteProtectPin())
{
digitalWrite(_writeProtectPin, LOW);
}
}
void I2C_eeprom::preventWrite()
{
if (hasWriteProtectPin())
{
digitalWrite(_writeProtectPin, HIGH);
}
}
void I2C_eeprom::setAutoWriteProtect(bool b)
{
if (hasWriteProtectPin())
{
_autoWriteProtect = b;
}
}
bool I2C_eeprom::getAutoWriteProtect()
{
return _autoWriteProtect;
}
////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
// _pageBlock aligns buffer to page boundaries for writing.
// and to I2C buffer size
// returns 0 = OK otherwise error
int I2C_eeprom::_pageBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length, const bool incrBuffer)
{
uint16_t addr = memoryAddress;
uint16_t len = length;
while (len > 0)
{
uint8_t bytesUntilPageBoundary = this->_pageSize - addr % this->_pageSize;
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
if (cnt > bytesUntilPageBoundary) cnt = bytesUntilPageBoundary;
int rv = _WriteBlock(addr, buffer, cnt);
if (rv != 0) return rv;
addr += cnt;
if (incrBuffer) buffer += cnt;
len -= cnt;
}
return 0;
}
// supports one and two bytes addresses
void I2C_eeprom::_beginTransmission(const uint16_t memoryAddress)
{
if (this->_isAddressSizeTwoWords)
{
_wire->beginTransmission(_deviceAddress);
// Address High Byte
_wire->write((memoryAddress >> 8));
}
else
{
uint8_t addr = _deviceAddress | ((memoryAddress >> 8) & 0x07);
_wire->beginTransmission(addr);
}
// Address Low Byte
// (or single byte for chips 16K or smaller that have one-word addresses)
_wire->write((memoryAddress & 0xFF));
}
// pre: length <= this->_pageSize && length <= I2C_BUFFERSIZE;
// returns 0 = OK otherwise error
int I2C_eeprom::_WriteBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint8_t length)
{
_waitEEReady();
if (_autoWriteProtect)
{
digitalWrite(_writeProtectPin, LOW);
}
this->_beginTransmission(memoryAddress);
_wire->write(buffer, length);
int rv = _wire->endTransmission();
if (_autoWriteProtect)
{
digitalWrite(_writeProtectPin, HIGH);
}
_lastWrite = micros();
yield(); // For OS scheduling
// if (rv != 0)
// {
// if (_debug)
// {
// SPRN("mem addr w: ");
// SPRNH(memoryAddress, HEX);
// SPRN("\t");
// SPRNL(rv);
// }
// return -(abs(rv)); // error
// }
return rv;
}
// pre: buffer is large enough to hold length bytes
// returns bytes read
uint8_t I2C_eeprom::_ReadBlock(const uint16_t memoryAddress, uint8_t * buffer, const uint8_t length)
{
_waitEEReady();
this->_beginTransmission(memoryAddress);
int rv = _wire->endTransmission();
if (rv != 0)
{
// if (_debug)
// {
// SPRN("mem addr r: ");
// SPRNH(memoryAddress, HEX);
// SPRN("\t");
// SPRNL(rv);
// }
return 0; // error
}
// readBytes will always be equal or smaller to length
uint8_t readBytes = 0;
if (this->_isAddressSizeTwoWords)
{
readBytes = _wire->requestFrom(_deviceAddress, length);
}
else
{
uint8_t addr = _deviceAddress | ((memoryAddress >> 8) & 0x07);
readBytes = _wire->requestFrom(addr, length);
}
yield(); // For OS scheduling
uint8_t cnt = 0;
while (cnt < readBytes)
{
buffer[cnt++] = _wire->read();
}
return readBytes;
}
// compares content of EEPROM with buffer.
// returns true if equal.
bool I2C_eeprom::_verifyBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint8_t length)
{
_waitEEReady();
this->_beginTransmission(memoryAddress);
int rv = _wire->endTransmission();
if (rv != 0)
{
// if (_debug)
// {
// SPRN("mem addr r: ");
// SPRNH(memoryAddress, HEX);
// SPRN("\t");
// SPRNL(rv);
// }
return false; // error
}
// readBytes will always be equal or smaller to length
uint8_t readBytes = 0;
if (this->_isAddressSizeTwoWords)
{
readBytes = _wire->requestFrom(_deviceAddress, length);
}
else
{
uint8_t addr = _deviceAddress | ((memoryAddress >> 8) & 0x07);
readBytes = _wire->requestFrom(addr, length);
}
yield(); // For OS scheduling
uint8_t cnt = 0;
while (cnt < readBytes)
{
if (buffer[cnt++] != _wire->read())
{
return false;
}
}
return true;
}
void I2C_eeprom::_waitEEReady()
{
// Wait until EEPROM gives ACK again.
// this is a bit faster than the hardcoded 5 milliSeconds
// TWR = WriteCycleTime
uint32_t waitTime = I2C_WRITEDELAY + _extraTWR * 1000UL;
while ((micros() - _lastWrite) <= waitTime)
{
if (isConnected()) return;
// TODO remove pre 1.7.4 code
// _wire->beginTransmission(_deviceAddress);
// int x = _wire->endTransmission();
// if (x == 0) return;
yield(); // For OS scheduling
}
return;
}
// -- END OF FILE --