mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
412 lines
9.0 KiB
C++
412 lines
9.0 KiB
C++
//
|
|
// FILE: ACS712.cpp
|
|
// AUTHOR: Rob Tillaart, Pete Thompson
|
|
// VERSION: 0.3.2
|
|
// DATE: 2020-08-02
|
|
// PURPOSE: ACS712 library - current measurement
|
|
|
|
|
|
#include "ACS712.h"
|
|
|
|
|
|
// CONSTRUCTOR
|
|
ACS712::ACS712(uint8_t analogPin, float volts, uint16_t maxADC, float mVperAmpere)
|
|
{
|
|
_pin = analogPin;
|
|
_maxADC = maxADC;
|
|
_mVperStep = 1000.0 * volts / maxADC; // 1x 1000 for V -> mV
|
|
_mVperAmpere = mVperAmpere;
|
|
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
|
|
_formFactor = ACS712_FF_SINUS;
|
|
_midPoint = maxADC / 2;
|
|
_noisemV = ACS712_DEFAULT_NOISE; // 21mV according to datasheet
|
|
}
|
|
|
|
|
|
// MEASUREMENTS
|
|
float ACS712::mA_peak2peak(float frequency, uint16_t cycles)
|
|
{
|
|
uint16_t period = round(1000000UL / frequency);
|
|
|
|
if (cycles == 0) cycles = 1;
|
|
float sum = 0;
|
|
|
|
for (uint16_t i = 0; i < cycles; i++)
|
|
{
|
|
int minimum, maximum;
|
|
// Better than using midPoint
|
|
minimum = maximum = analogRead(_pin);
|
|
|
|
// find minimum and maximum
|
|
uint32_t start = micros();
|
|
while (micros() - start < period) // UNO ~180 samples...
|
|
{
|
|
int value = analogRead(_pin);
|
|
if (_suppresNoise) // average 2 samples.
|
|
{
|
|
value = (value + analogRead(_pin))/2;
|
|
}
|
|
// determine extremes
|
|
if (value < minimum) minimum = value;
|
|
else if (value > maximum) maximum = value;
|
|
}
|
|
sum += (maximum - minimum);
|
|
}
|
|
float peak2peak = sum * _mAPerStep;
|
|
if (cycles > 1) peak2peak /= cycles;
|
|
|
|
return peak2peak;
|
|
}
|
|
|
|
|
|
float ACS712::mA_AC(float frequency, uint16_t cycles)
|
|
{
|
|
uint16_t period = round(1000000UL / frequency);
|
|
|
|
if (cycles == 0) cycles = 1;
|
|
float sum = 0;
|
|
|
|
// remove float operation from loop.
|
|
uint16_t zeroLevel = round(_noisemV/_mVperStep);
|
|
|
|
for (uint16_t i = 0; i < cycles; i++)
|
|
{
|
|
uint16_t samples = 0;
|
|
uint16_t zeros = 0;
|
|
|
|
int _min, _max;
|
|
_min = _max = analogRead(_pin);
|
|
|
|
// find minimum and maximum and count the zero-level "percentage"
|
|
uint32_t start = micros();
|
|
while (micros() - start < period) // UNO ~180 samples...
|
|
{
|
|
samples++;
|
|
int value = analogRead(_pin);
|
|
if (_suppresNoise) // average 2 samples.
|
|
{
|
|
value = (value + analogRead(_pin))/2;
|
|
}
|
|
// determine extremes
|
|
if (value < _min) _min = value;
|
|
else if (value > _max) _max = value;
|
|
// count zeros
|
|
if (abs(value - _midPoint) <= zeroLevel ) zeros++;
|
|
}
|
|
int peak2peak = _max - _min;
|
|
|
|
// automatic determine _formFactor / crest factor
|
|
float D = 0;
|
|
float FF = 0;
|
|
if (zeros > samples * 0.025) // more than 2% zero's
|
|
{
|
|
D = 1.0 - (1.0 * zeros) / samples; // % SAMPLES NONE ZERO
|
|
FF = sqrt(D) * _formFactor; // ASSUME NON ZERO PART ~ SINUS
|
|
}
|
|
else // # zeros is small => D --> 1 --> sqrt(D) --> 1
|
|
{
|
|
FF = _formFactor;
|
|
}
|
|
|
|
// value could be partially pre-calculated: C = 1000.0 * 0.5 * _mVperStep / _mVperAmpere;
|
|
// return 1000.0 * 0.5 * peak2peak * _mVperStep * _formFactor / _mVperAmpere);
|
|
sum += peak2peak * FF;
|
|
}
|
|
float mA = 0.5 * sum * _mAPerStep;
|
|
if (cycles > 1) mA /= cycles;
|
|
|
|
return mA;
|
|
}
|
|
|
|
|
|
float ACS712::mA_AC_sampling(float frequency, uint16_t cycles)
|
|
{
|
|
uint32_t period = round(1000000UL / frequency);
|
|
|
|
if (cycles == 0) cycles = 1;
|
|
float sum = 0;
|
|
|
|
// float noiseLevel = _noisemV/_mVperStep;
|
|
|
|
for (uint16_t i = 0; i < cycles; i++)
|
|
{
|
|
uint16_t samples = 0;
|
|
float sumSquared = 0;
|
|
|
|
uint32_t start = micros();
|
|
while (micros() - start < period)
|
|
{
|
|
samples++;
|
|
int value = analogRead(_pin);
|
|
if (_suppresNoise) // average 2 samples.
|
|
{
|
|
value = (value + analogRead(_pin))/2;
|
|
}
|
|
float current = value - _midPoint;
|
|
sumSquared += (current * current);
|
|
// not adding noise squared might be more correct for small currents.
|
|
// if (abs(current) > noiseLevel)
|
|
// {
|
|
// sumSquared += (current * current);
|
|
// }
|
|
}
|
|
sum += sqrt(sumSquared / samples);
|
|
}
|
|
float mA = sum * _mAPerStep;
|
|
if (cycles > 1) mA /= cycles;
|
|
|
|
return mA;
|
|
}
|
|
|
|
|
|
float ACS712::mA_DC(uint16_t cycles)
|
|
{
|
|
// read at least twice to stabilize the ADC
|
|
analogRead(_pin);
|
|
if (cycles == 0) cycles = 1;
|
|
float sum = 0;
|
|
for (uint16_t i = 0; i < cycles; i++)
|
|
{
|
|
int value = analogRead(_pin);
|
|
if (_suppresNoise) // average 2 samples.
|
|
{
|
|
value = (value + analogRead(_pin))/2;
|
|
}
|
|
sum += (value - _midPoint);
|
|
}
|
|
float mA = sum * _mAPerStep;
|
|
if (cycles > 1) mA /= cycles;
|
|
|
|
return mA;
|
|
}
|
|
|
|
|
|
// CALIBRATION MIDPOINT
|
|
uint16_t ACS712::setMidPoint(uint16_t midPoint)
|
|
{
|
|
if (midPoint <= _maxADC) _midPoint = (int) midPoint;
|
|
return _midPoint;
|
|
};
|
|
|
|
|
|
uint16_t ACS712::getMidPoint()
|
|
{
|
|
return _midPoint;
|
|
};
|
|
|
|
|
|
uint16_t ACS712::incMidPoint()
|
|
{
|
|
if (_midPoint < (int)(_maxADC)) _midPoint += 1;
|
|
return _midPoint;
|
|
};
|
|
|
|
|
|
uint16_t ACS712::decMidPoint()
|
|
{
|
|
if (_midPoint > 0) _midPoint -= 1;
|
|
return _midPoint;
|
|
};
|
|
|
|
|
|
// configure by sampling for 2 cycles of AC
|
|
// Also works for DC as long as no current flowing
|
|
// note this is blocking!
|
|
uint16_t ACS712::autoMidPoint(float frequency, uint16_t cycles)
|
|
{
|
|
uint16_t twoPeriods = round(2000000UL / frequency);
|
|
|
|
if (cycles == 0) cycles = 1;
|
|
|
|
uint32_t total = 0;
|
|
for (uint16_t i = 0; i < cycles; i++)
|
|
{
|
|
uint32_t subTotal = 0;
|
|
uint32_t samples = 0;
|
|
uint32_t start = micros();
|
|
while (micros() - start < twoPeriods)
|
|
{
|
|
uint16_t reading = analogRead(_pin);
|
|
subTotal += reading;
|
|
samples++;
|
|
// Delaying prevents overflow
|
|
// since we'll perform a maximum of 40,000 reads @ 50 Hz.
|
|
delayMicroseconds(1);
|
|
}
|
|
total += (subTotal / samples);
|
|
}
|
|
_midPoint = total / cycles;
|
|
return _midPoint;
|
|
}
|
|
|
|
|
|
uint16_t ACS712::resetMidPoint()
|
|
{
|
|
_midPoint = _maxADC / 2;
|
|
return _midPoint;
|
|
};
|
|
|
|
|
|
// CALIBRATION FORM FACTOR
|
|
void ACS712::setFormFactor(float formFactor)
|
|
{
|
|
_formFactor = formFactor;
|
|
};
|
|
|
|
|
|
float ACS712::getFormFactor()
|
|
{
|
|
return _formFactor;
|
|
};
|
|
|
|
|
|
// CALIBRATION NOISE
|
|
// noise defaults 21 datasheet
|
|
void ACS712::setNoisemV(uint8_t noisemV)
|
|
{
|
|
_noisemV = noisemV;
|
|
};
|
|
|
|
|
|
uint8_t ACS712::getNoisemV()
|
|
{
|
|
return _noisemV;
|
|
};
|
|
|
|
|
|
float ACS712::mVNoiseLevel(float frequency, uint16_t cycles)
|
|
{
|
|
float mA = mA_peak2peak(frequency, cycles);
|
|
// divide by 2 as the level is half of the peak to peak range
|
|
return mA * _mVperAmpere * 0.001 / 2;
|
|
}
|
|
|
|
|
|
void ACS712::suppressNoise(bool flag)
|
|
{
|
|
_suppresNoise = flag;
|
|
}
|
|
|
|
|
|
// CALIBRATION mV PER AMP
|
|
// Adjusting resolution AC and DC
|
|
void ACS712::setmVperAmp(float mVperAmpere)
|
|
{
|
|
_mVperAmpere = mVperAmpere;
|
|
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
|
|
};
|
|
|
|
|
|
float ACS712::getmVperAmp()
|
|
{
|
|
return _mVperAmpere;
|
|
};
|
|
|
|
|
|
float ACS712::getmAPerStep()
|
|
{
|
|
return _mAPerStep;
|
|
};
|
|
|
|
|
|
float ACS712::getAmperePerStep()
|
|
{
|
|
return _mAPerStep * 0.001;
|
|
};
|
|
|
|
|
|
// FREQUENCY DETECTION
|
|
// uses oversampling and averaging to minimize variation
|
|
// blocks for substantial amount of time, depending on minimalFrequency
|
|
float ACS712::detectFrequency(float minimalFrequency)
|
|
{
|
|
int maximum = 0;
|
|
int minimum = 0;
|
|
maximum = minimum = analogRead(_pin);
|
|
|
|
// determine maxima
|
|
uint32_t timeOut = round(1000000.0 / minimalFrequency);
|
|
uint32_t start = micros();
|
|
while (micros() - start < timeOut)
|
|
{
|
|
int value = analogRead(_pin);
|
|
if (value > maximum) maximum = value;
|
|
if (value < minimum) minimum = value;
|
|
}
|
|
|
|
// calculate quarter points
|
|
// using quarter points is less noise prone than using one single midpoint
|
|
int Q1 = (3 * minimum + maximum ) / 4;
|
|
int Q3 = (minimum + 3 * maximum ) / 4;
|
|
|
|
// 10x passing Quantile points
|
|
// wait for the right moment to start
|
|
// to prevent endless loop a timeout is checked.
|
|
timeOut *= 10;
|
|
start = micros();
|
|
// casting to int to keep compiler happy.
|
|
while ((int(analogRead(_pin)) > Q1) && ((micros() - start) < timeOut));
|
|
while ((int(analogRead(_pin)) <= Q3) && ((micros() - start) < timeOut));
|
|
start = micros();
|
|
for (int i = 0; i < 10; i++)
|
|
{
|
|
while ((int(analogRead(_pin)) > Q1) && ((micros() - start) < timeOut));
|
|
while ((int(analogRead(_pin)) <= Q3) && ((micros() - start) < timeOut));
|
|
}
|
|
uint32_t stop = micros();
|
|
|
|
// calculate frequency
|
|
float wavelength = stop - start;
|
|
float frequency = 1e7 / wavelength;
|
|
if (_microsAdjust != 1.0) frequency *= _microsAdjust;
|
|
return frequency;
|
|
}
|
|
|
|
|
|
// timing for FREQUENCY DETECTION
|
|
void ACS712::setMicrosAdjust(float factor)
|
|
{
|
|
_microsAdjust = factor;
|
|
};
|
|
|
|
|
|
float ACS712::getMicrosAdjust()
|
|
{
|
|
return _microsAdjust;
|
|
};
|
|
|
|
|
|
// DEBUG
|
|
uint16_t ACS712::getMinimum(uint16_t milliSeconds)
|
|
{
|
|
uint16_t minimum = analogRead(_pin);
|
|
|
|
// find minimum
|
|
uint32_t start = millis();
|
|
while (millis() - start < milliSeconds)
|
|
{
|
|
uint16_t value = analogRead(_pin);
|
|
if (value < minimum) minimum = value;
|
|
}
|
|
return minimum;
|
|
}
|
|
|
|
|
|
uint16_t ACS712::getMaximum(uint16_t milliSeconds)
|
|
{
|
|
uint16_t maximum = analogRead(_pin);
|
|
|
|
// find minimum
|
|
uint32_t start = millis();
|
|
while (millis() - start < milliSeconds)
|
|
{
|
|
uint16_t value = analogRead(_pin);
|
|
if (value > maximum) maximum = value;
|
|
}
|
|
return maximum;
|
|
}
|
|
|
|
|
|
// -- END OF FILE --
|
|
|