mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
34ff8cfd02
+ header for example sketch + add bigger test sketch
182 lines
4.3 KiB
C++
182 lines
4.3 KiB
C++
//
|
|
// FILE: RunningMedian.cpp
|
|
// AUTHOR: Rob dot Tillaart at gmail dot com
|
|
// VERSION: 0.1.13
|
|
// PURPOSE: RunningMedian library for Arduino
|
|
//
|
|
// HISTORY:
|
|
// 0.1.00 - 2011-02-16 initial version
|
|
// 0.1.01 - 2011-02-22 added remarks from CodingBadly
|
|
// 0.1.02 - 2012-03-15 added
|
|
// 0.1.03 - 2013-09-30 added _sorted flag, minor refactor
|
|
// 0.1.04 - 2013-10-17 added getAverage(uint8_t) - kudo's to Sembazuru
|
|
// 0.1.05 - 2013-10-18 fixed bug in sort; removes default constructor; dynamic memory
|
|
// 0.1.06 - 2013-10-19 faster sort, dynamic arrays, replaced sorted float array with indirection array
|
|
// 0.1.07 - 2013-10-19 add correct median if _cnt is even.
|
|
// 0.1.08 - 2013-10-20 add getElement(), add getSottedElement() add predict()
|
|
// 0.1.09 - 2014-11-25 float to double (support ARM)
|
|
// 0.1.10 - 2015-03-07 fix clear
|
|
// 0.1.11 - 2015-03-29 undo 0.1.10 fix clear
|
|
// 0.1.12 - 2015-07-12 refactor constructor + const
|
|
// 0.1.13 - 2015-10-30 fix getElement(n) - kudos to Gdunge
|
|
//
|
|
// Released to the public domain
|
|
//
|
|
|
|
#include "RunningMedian.h"
|
|
|
|
RunningMedian::RunningMedian(const uint8_t size)
|
|
{
|
|
_size = constrain(size, MEDIAN_MIN_SIZE, MEDIAN_MAX_SIZE);
|
|
|
|
#ifdef RUNNING_MEDIAN_USE_MALLOC
|
|
_ar = (double *) malloc(_size * sizeof(double));
|
|
_p = (uint8_t *) malloc(_size * sizeof(uint8_t));
|
|
#endif
|
|
|
|
clear();
|
|
}
|
|
|
|
RunningMedian::~RunningMedian()
|
|
{
|
|
#ifdef RUNNING_MEDIAN_USE_MALLOC
|
|
free(_ar);
|
|
free(_p);
|
|
#endif
|
|
}
|
|
|
|
// resets all counters
|
|
void RunningMedian::clear()
|
|
{
|
|
_cnt = 0;
|
|
_idx = 0;
|
|
_sorted = false;
|
|
for (uint8_t i = 0; i< _size; i++) _p[i] = i;
|
|
}
|
|
|
|
// adds a new value to the data-set
|
|
// or overwrites the oldest if full.
|
|
void RunningMedian::add(double value)
|
|
{
|
|
_ar[_idx++] = value;
|
|
if (_idx >= _size) _idx = 0; // wrap around
|
|
if (_cnt < _size) _cnt++;
|
|
_sorted = false;
|
|
}
|
|
|
|
double RunningMedian::getMedian()
|
|
{
|
|
if (_cnt > 0)
|
|
{
|
|
if (_sorted == false) sort();
|
|
if (_cnt & 0x01) return _ar[_p[_cnt/2]];
|
|
else return (_ar[_p[_cnt/2]] + _ar[_p[_cnt/2 - 1]]) / 2;
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
#ifdef RUNNING_MEDIAN_ALL
|
|
double RunningMedian::getHighest()
|
|
{
|
|
return getSortedElement(_cnt - 1);
|
|
}
|
|
|
|
double RunningMedian::getLowest()
|
|
{
|
|
return getSortedElement(0);
|
|
}
|
|
|
|
double RunningMedian::getAverage()
|
|
{
|
|
if (_cnt > 0)
|
|
{
|
|
double sum = 0;
|
|
for (uint8_t i=0; i< _cnt; i++) sum += _ar[i];
|
|
return sum / _cnt;
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
double RunningMedian::getAverage(uint8_t nMedians)
|
|
{
|
|
if ((_cnt > 0) && (nMedians > 0))
|
|
{
|
|
if (_cnt < nMedians) nMedians = _cnt; // when filling the array for first time
|
|
uint8_t start = ((_cnt - nMedians)/2);
|
|
uint8_t stop = start + nMedians;
|
|
|
|
if (_sorted == false) sort();
|
|
double sum = 0;
|
|
for (uint8_t i = start; i < stop; i++) sum += _ar[_p[i]];
|
|
return sum / nMedians;
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
double RunningMedian::getElement(const uint8_t n)
|
|
{
|
|
if ((_cnt > 0) && (n < _cnt))
|
|
{
|
|
uint8_t pos = _idx + n;
|
|
if (pos >= _cnt) // faster than %
|
|
{
|
|
pos -= _cnt;
|
|
}
|
|
return _ar[pos];
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
double RunningMedian::getSortedElement(const uint8_t n)
|
|
{
|
|
if ((_cnt > 0) && (n < _cnt))
|
|
{
|
|
if (_sorted == false) sort();
|
|
return _ar[_p[n]];
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
// n can be max <= half the (filled) size
|
|
double RunningMedian::predict(const uint8_t n)
|
|
{
|
|
if ((_cnt > 0) && (n < _cnt/2))
|
|
{
|
|
double med = getMedian(); // takes care of sorting !
|
|
if (_cnt & 0x01)
|
|
{
|
|
return max(med - _ar[_p[_cnt/2-n]], _ar[_p[_cnt/2+n]] - med);
|
|
}
|
|
else
|
|
{
|
|
double f1 = (_ar[_p[_cnt/2 - n]] + _ar[_p[_cnt/2 - n - 1]])/2;
|
|
double f2 = (_ar[_p[_cnt/2 + n]] + _ar[_p[_cnt/2 + n - 1]])/2;
|
|
return max(med - f1, f2 - med)/2;
|
|
}
|
|
}
|
|
return NAN;
|
|
}
|
|
#endif
|
|
|
|
void RunningMedian::sort()
|
|
{
|
|
// bubble sort with flag
|
|
for (uint8_t i = 0; i < _cnt-1; i++)
|
|
{
|
|
bool flag = true;
|
|
for (uint8_t j = 1; j < _cnt-i; j++)
|
|
{
|
|
if (_ar[_p[j-1]] > _ar[_p[j]])
|
|
{
|
|
uint8_t t = _p[j-1];
|
|
_p[j-1] = _p[j];
|
|
_p[j] = t;
|
|
flag = false;
|
|
}
|
|
}
|
|
if (flag) break;
|
|
}
|
|
_sorted = true;
|
|
}
|
|
|
|
// END OF FILE
|