2022-04-21 16:40:24 +02:00

446 lines
8.8 KiB
C++

//
// FILE: TM1637.cpp
// AUTHOR: Rob Tillaart
// DATE: 2019-10-28
// VERSION: 0.3.2
// PURPOSE: TM1637 library for Arduino
// URL: https://github.com/RobTillaart/TM1637_RT
//
// HISTORY:
// 0.1.0 2019-10-28 initial version
// 0.1.1 2021-02-15 first release + examples.
// 0.1.2 2021-04-16 update readme, fix default values.
// 0.2.0 2021-09-26 add ESP32 support - kudos to alexthomazo
// 2021-10-07 add support for letters g-z; added keyscan()
// tested on ESP8266
// 0.3.0 2021-10-27 improved keyscan + documentation - kudos to wfdudley
// 0.3.1 2021-12-29 update library.json, license, readme, minor edits
// tested on 6 digits (decimal point) display
// 0.3.2 2022-04-16 fix #15 support for 4 digits.
// tested on 4 digit (clock) display.
// NOTE:
// on the inexpensive TM1637 boards @wfdudley has used, keyscan
// works if you add a 1000 ohm pull-up resistor from DIO to 3.3v
// This reduces the rise time of the DIO signal when reading the key info.
// If one only uses the pull-up inside the microcontroller,
// the rise time is too long for the data to be read reliably.
#include "TM1637.h"
#define TM1637_ADDR_AUTO 0x40
#define TM1637_READ_KEYSCAN 0x42
#define TM1637_ADDR_FIXED 0x44
#define TM1637_CMD_SET_DATA 0x40
#define TM1637_CMD_SET_ADDR 0xC0
#define TM1637_CMD_DISPLAY 0x88
/***************
---
| |
---
| |
--- .
-01-
20 | | 02
-40-
10 | | 04
-08- .80
*/
// PROGMEM ?
static uint8_t seg[] =
{
0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, // 0 - 9
0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71, 0x00, 0x40 // A - F, ' ', '-'
};
static uint8_t alpha_seg[] =
{
0x00, 0x74, 0x10, 0x00, // g, h, i, j,
0x00, 0x38, 0x00, 0x54, // k, l, m, n,
0x5c, 0x00, 0x00, 0x50, // o, p, q, r,
0x00, 0x31, 0x1c, 0x1c, // s, t, u, v,
0x00, 0x00, 0x00, 0x00 // w, x, y, z
};
TM1637::TM1637()
{
_brightness = 0x03;
_bitDelay = 10;
}
void TM1637::init(uint8_t clockPin, uint8_t dataPin, uint8_t digits)
{
_clock = clockPin;
_data = dataPin;
_digits = digits;
pinMode(_clock, OUTPUT);
digitalWrite(_clock, HIGH);
pinMode(_data, OUTPUT);
digitalWrite(_data, HIGH);
// TODO: replace _digits by a display enumeration?
if (_digits == 4 )
{
setDigitOrder(3,2,1,0);
}
else // (_digits == 6 ) // default
{
setDigitOrder(3,4,5,0,1,2);
}
}
void TM1637::displayInt(long value)
{
uint8_t data[8] = { 16, 16, 16, 16, 16, 16, 16, 16};
long v = value;
int last = _digits;
bool neg = (v < 0);
if (neg)
{
v = -v;
last--;
data[last] = 17; // minus sign;
}
for (int i = 0; i < last; i++)
{
long t = v / 10;
data[i] = v - 10 * t; // faster than %
v = t;
}
displayRaw(data, -1);
}
void TM1637::displayFloat(float value)
{
uint8_t data[8] = { 16, 16, 16, 16, 16, 16, 16, 16};
float v = value;
int dpos = _digits-1;
int last = _digits;
bool neg = (v < 0);
if (neg)
{
v = -v;
dpos--;
last--;
data[last] = 17; // minus sign;
}
while (v >= 10)
{
v /= 10;
dpos--;
}
for (int i = last-1; i > -1; i--)
{
int d = v;
data[i] = d;
v -= d;
v *= 10;
}
displayRaw(data, dpos);
}
void TM1637::displayHex(uint32_t value)
{
uint8_t data[8] = { 16, 16, 16, 16, 16, 16, 16, 16};
uint32_t v = value;
for (int i = 0; i < _digits; i++)
{
uint32_t t = v / 16;
data[i] = v & 0x0F; // faster than %
v = t;
}
displayRaw(data, -1);
}
void TM1637::displayClear()
{
uint8_t data[8] = { 16, 16, 16, 16, 16, 16, 16, 16};
displayRaw(data, -1);
}
void TM1637::setBrightness(uint8_t b)
{
_brightness = b;
if (_brightness > 0x07) _brightness = 0x07;
}
void TM1637::setDigitOrder(uint8_t a, uint8_t b,
uint8_t c, uint8_t d, uint8_t e,
uint8_t f, uint8_t g, uint8_t h)
{
_digitOrder[0] = a;
_digitOrder[1] = b;
_digitOrder[2] = c;
_digitOrder[3] = d;
_digitOrder[4] = e;
_digitOrder[5] = f;
_digitOrder[6] = g;
_digitOrder[7] = h;
}
void TM1637::displayRaw(uint8_t * data, uint8_t pointPos)
{
uint8_t b = 0;
start();
writeByte(TM1637_ADDR_AUTO);
stop();
start();
writeByte(TM1637_CMD_SET_ADDR);
for (uint8_t d = 0; d < _digits; d++)
{
uint8_t i = _digitOrder[d];
data[i] &= 0x7f;
if (data[i] <= 17) // HEX DIGIT
{
b = seg[data[i]];
}
else if (data[i] <= 37) // ASCII
{
b = alpha_seg[data[i] - 18];
}
// do we need a decimal point
if ((i == pointPos) || (data[i] & 0x80))
{
b |= 0x80;
}
writeByte(b);
}
stop();
start();
writeByte(TM1637_CMD_DISPLAY | _brightness);
stop();
}
/* previous version
void TM1637::displayRaw(uint8_t * data, uint8_t pointPos)
{
uint8_t b = 0, dp = 0;
start();
writeByte(TM1637_ADDR_AUTO);
stop();
// for debugging new displays...
// for (int i = 0; i< 6; i++)
// {
// Serial.print(data[i]);
// Serial.print("\t");
// }
// Serial.println();
start();
writeByte(TM1637_CMD_SET_ADDR);
// TODO: how to encode display digit order in a generic way?
// 2nd array? (packed in nybbles?)
// 6 digits == 2x3 display
// [3,4,5,0,1,2]
if (_digits == 6)
{
for (uint8_t i = 3; i < 6 ; i++)
{
dp = data[i] & 0x80;
data[i] &= 0x7f;
if(data[i] <= 17) {
b = seg[data[i]];
}
else if(data[i] <= 37) {
b = alpha_seg[data[i]-18];
}
if (i == pointPos || dp) b |= 0x80;
writeByte(b);
}
for (uint8_t i = 0; i < 3 ; i++)
{
dp = data[i] & 0x80;
data[i] &= 0x7f;
if(data[i] <= 17) {
b = seg[data[i]];
}
else if(data[i] <= 37) {
b = alpha_seg[data[i]-18];
}
if (i == pointPos || dp) b |= 0x80;
writeByte(b);
}
}
// 4 digit clock version. => : is the point at digit 2
// [3,2,1,0]
if (_digits == 4)
{
for (uint8_t j = 0; j < 4 ; j++)
{
uint8_t i = 3 - j;
dp = data[i] & 0x80; // repeating block till writeByte()
data[i] &= 0x7f;
if(data[i] <= 17) {
b = seg[data[i]];
}
else if(data[i] <= 37) {
b = alpha_seg[data[i]-18];
}
if (i == pointPos || dp) b |= 0x80;
writeByte(b);
}
}
stop();
start();
writeByte(TM1637_CMD_DISPLAY | _brightness);
stop();
}
*/
//////////////////////////////////////////////////////
//
// PRIVATE
//
uint8_t TM1637::writeByte(uint8_t data)
{
// shift out data 8 bits LSB first
for (uint8_t i = 8; i > 0; i--)
{
writeSync(_clock, LOW);
writeSync(_data, data & 0x01);
writeSync(_clock, HIGH);
data >>= 1;
}
writeSync(_clock, LOW);
writeSync(_data, HIGH);
writeSync(_clock, HIGH);
// get ACKNOWLEDGE
pinMode(_data, INPUT);
delayMicroseconds(_bitDelay);
uint8_t rv = digitalRead(_data);
// FORCE OUTPUT LOW
pinMode(_data, OUTPUT);
digitalWrite(_data, LOW);
delayMicroseconds(_bitDelay);
return rv;
}
void TM1637::start()
{
writeSync(_clock, HIGH);
writeSync(_data, HIGH);
writeSync(_data, LOW);
writeSync(_clock, LOW);
}
void TM1637::stop()
{
writeSync(_clock, LOW);
writeSync(_data, LOW);
writeSync(_clock, HIGH);
writeSync(_data, HIGH);
}
void TM1637::writeSync(uint8_t pin, uint8_t val)
{
digitalWrite(pin, val);
#if defined(ESP32)
nanoDelay(2);
#endif
// other processors may need other "nanoDelay(n)"
}
// keyscan results are reversed left for right from the data sheet.
// here are the values returned by keyscan():
// pin 2 3 4 5 6 7 8 9
// sg1 sg2 sg3 sg4 sg5 sg6 sg7 sg8
// 19 k1 0xf7 0xf6 0xf5 0xf4 0xf3 0xf2 0xf1 0xf0
// 20 k2 0xef 0xee 0xed 0xec 0xeb 0xea 0xe9 0xe8
uint8_t TM1637::keyscan(void)
{
uint8_t halfDelay = _bitDelay >> 1;
uint8_t key;
start();
key = 0;
writeByte(TM1637_READ_KEYSCAN); // includes the ACK, leaves DATA low
pinMode(_data, INPUT_PULLUP);
for (uint8_t i = 0; i <= 7; i++) {
writeSync(_clock, LOW);
delayMicroseconds(halfDelay);
writeSync(_clock, HIGH);
delayMicroseconds(halfDelay);
key >>= 1;
key |= (digitalRead(_data)) ? 0x80 : 0x00 ;
}
writeSync(_clock, LOW);
delayMicroseconds(halfDelay);
writeSync(_clock, HIGH);
// wait for ACK
delayMicroseconds(halfDelay);
// FORCE OUTPUT LOW
pinMode(_data, OUTPUT);
digitalWrite(_data, LOW);
delayMicroseconds(halfDelay);
stop();
return key;
}
// nanoDelay() makes it possible to go into the sub micron delays.
// It is used to lengthen pulses to be minimal 400 ns but not much longer. See datasheet.
void TM1637::nanoDelay(uint16_t n)
{
volatile uint16_t i = n;
while (i--);
}
// -- END OF FILE --