GY-63_MS5611/libraries/RunningMedian/RunningMedian.cpp
2015-10-30 16:46:22 +01:00

176 lines
4.1 KiB
C++

//
// FILE: RunningMedian.cpp
// AUTHOR: Rob dot Tillaart at gmail dot com
// VERSION: 0.1.12
// PURPOSE: RunningMedian library for Arduino
//
// HISTORY:
// 0.1.00 - 2011-02-16 initial version
// 0.1.01 - 2011-02-22 added remarks from CodingBadly
// 0.1.02 - 2012-03-15 added
// 0.1.03 - 2013-09-30 added _sorted flag, minor refactor
// 0.1.04 - 2013-10-17 added getAverage(uint8_t) - kudo's to Sembazuru
// 0.1.05 - 2013-10-18 fixed bug in sort; removes default constructor; dynamic memory
// 0.1.06 - 2013-10-19 faster sort, dynamic arrays, replaced sorted float array with indirection array
// 0.1.07 - 2013-10-19 add correct median if _cnt is even.
// 0.1.08 - 2013-10-20 add getElement(), add getSottedElement() add predict()
// 0.1.09 - 2014-11-25 float to double (support ARM)
// 0.1.10 - 2015-03-07 fix clear
// 0.1.11 - 2015-03-29 undo 0.1.10 fix clear
// 0.1.12 - 2015-07-12 refactor constructor + const
//
// Released to the public domain
//
#include "RunningMedian.h"
RunningMedian::RunningMedian(const uint8_t size)
{
_size = constrain(size, MEDIAN_MIN_SIZE, MEDIAN_MAX_SIZE);
#ifdef RUNNING_MEDIAN_USE_MALLOC
_ar = (double *) malloc(_size * sizeof(double));
_p = (uint8_t *) malloc(_size * sizeof(uint8_t));
#endif
clear();
}
RunningMedian::~RunningMedian()
{
#ifdef RUNNING_MEDIAN_USE_MALLOC
free(_ar);
free(_p);
#endif
}
// resets all counters
void RunningMedian::clear()
{
_cnt = 0;
_idx = 0;
_sorted = false;
for (uint8_t i = 0; i< _size; i++) _p[i] = i;
}
// adds a new value to the data-set
// or overwrites the oldest if full.
void RunningMedian::add(double value)
{
_ar[_idx++] = value;
if (_idx >= _size) _idx = 0; // wrap around
if (_cnt < _size) _cnt++;
_sorted = false;
}
double RunningMedian::getMedian()
{
if (_cnt > 0)
{
if (_sorted == false) sort();
if (_cnt & 0x01) return _ar[_p[_cnt/2]];
else return (_ar[_p[_cnt/2]] + _ar[_p[_cnt/2 - 1]]) / 2;
}
return NAN;
}
#ifdef RUNNING_MEDIAN_ALL
double RunningMedian::getHighest()
{
return getSortedElement(_cnt - 1);
}
double RunningMedian::getLowest()
{
return getSortedElement(0);
}
double RunningMedian::getAverage()
{
if (_cnt > 0)
{
double sum = 0;
for (uint8_t i=0; i< _cnt; i++) sum += _ar[i];
return sum / _cnt;
}
return NAN;
}
double RunningMedian::getAverage(uint8_t nMedians)
{
if ((_cnt > 0) && (nMedians > 0))
{
if (_cnt < nMedians) nMedians = _cnt; // when filling the array for first time
uint8_t start = ((_cnt - nMedians)/2);
uint8_t stop = start + nMedians;
if (_sorted == false) sort();
double sum = 0;
for (uint8_t i = start; i < stop; i++) sum += _ar[_p[i]];
return sum / nMedians;
}
return NAN;
}
double RunningMedian::getElement(const uint8_t n)
{
if ((_cnt > 0) && (n < _cnt))
{
return _ar[n];
}
return NAN;
}
double RunningMedian::getSortedElement(const uint8_t n)
{
if ((_cnt > 0) && (n < _cnt))
{
if (_sorted == false) sort();
return _ar[_p[n]];
}
return NAN;
}
// n can be max <= half the (filled) size
double RunningMedian::predict(const uint8_t n)
{
if ((_cnt > 0) && (n < _cnt/2))
{
double med = getMedian(); // takes care of sorting !
if (_cnt & 0x01)
{
return max(med - _ar[_p[_cnt/2-n]], _ar[_p[_cnt/2+n]] - med);
}
else
{
double f1 = (_ar[_p[_cnt/2 - n]] + _ar[_p[_cnt/2 - n - 1]])/2;
double f2 = (_ar[_p[_cnt/2 + n]] + _ar[_p[_cnt/2 + n - 1]])/2;
return max(med - f1, f2 - med)/2;
}
}
return NAN;
}
#endif
void RunningMedian::sort()
{
// bubble sort with flag
for (uint8_t i = 0; i < _cnt-1; i++)
{
bool flag = true;
for (uint8_t j = 1; j < _cnt-i; j++)
{
if (_ar[_p[j-1]] > _ar[_p[j]])
{
uint8_t t = _p[j-1];
_p[j-1] = _p[j];
_p[j] = t;
flag = false;
}
}
if (flag) break;
}
_sorted = true;
}
// END OF FILE