GY-63_MS5611/libraries/printHelpers/printHelpers.cpp
2024-01-06 12:14:22 +01:00

692 lines
13 KiB
C++

//
// FILE: printHelpers.cpp
// AUTHOR: Rob Tillaart
// DATE: 2018-01-21
// VERSION: 0.4.4
// PURPOSE: Arduino library to help formatting for printing.
// URL: https://github.com/RobTillaart/printHelpers
#include "printHelpers.h"
// global buffer used by all functions so no static buffer in every function
// is needed ==> results need to be printed/copied asap
// not usable in multi-threading environments (use with care)
//
// 24 is a pretty safe minimum
char __printbuffer[PRINTBUFFERSIZE];
////////////////////////////////////////////////////////////
//
// PRINT 64 BIT
//
// print64 note
// buffer size 66 will work for base 2 -36
// buffer size 34 will work for base 4 -36
// buffer size 24 will work for base 8 -36
// buffer size 22 will work for base 10 - 36
char * print64(int64_t value, uint8_t base)
{
char * buffer = __printbuffer;
uint8_t i = 0;
uint8_t j = 0;
buffer[0] = 0;
// small base need bigger buffer
if ((base < 10) && (PRINTBUFFERSIZE <= 22)) return buffer;
// handle special case
if (value == 0)
{
buffer[0] = '0';
buffer[1] = 0;
return buffer;
}
// PREFIX NEGATIVE
// handle negative values (for all bases for now)
if ((value < 0) && (base != 16))
{
value = -value;
buffer[0] = '-';
i++;
j++;
}
// PREFIX HEX
if (base == 16)
{
buffer[0] = '0';
buffer[1] = 'x';
buffer[2] = 0;
i = 2;
j = 2;
}
// create one digit per loop
while (value > 0)
{
int64_t temp = value / base;
uint8_t digit = value - temp * base;
buffer[i++] = (digit < 10) ? '0' + digit : ('A' - 10) + digit;
value = temp;
}
buffer[i] = 0;
// reverse buffer
--i;
while ( i > j)
{
uint8_t temp = buffer[i];
buffer[i] = buffer[j];
buffer[j] = temp;
i--;
j++;
}
return buffer;
}
char * print64(uint64_t value, uint8_t base)
{
char * buffer = __printbuffer;
uint8_t i = 0;
uint8_t j = 0;
buffer[0] = 0;
// small base need bigger buffer
if ((base < 10) && (PRINTBUFFERSIZE <= 22)) return buffer;
// handle special case
if (value == 0)
{
buffer[0] = '0';
buffer[1] = 0;
return buffer;
}
// create one digit per iteration
while (value > 0)
{
uint64_t temp = value / base;
uint8_t digit = value - temp * base;
buffer[i++] = (digit < 10) ? '0' + digit : ('A' - 10) + digit;
value = temp;
}
buffer[i] = 0;
// reverse buffer
--i;
while (i > j)
{
uint8_t temp = buffer[i];
buffer[i] = buffer[j];
buffer[j] = temp;
i--;
j++;
}
return buffer;
}
////////////////////////////////////////////////////////////
//
// SCIENTIFIC NOTATIION
//
// typical buffer size for 8 byte double is 22 bytes
// 15 bytes mantissa, sign dot E-xxx
// em = exponentMultiple.
char * scieng(double value, uint8_t decimals, uint8_t em)
{
char * buffer = __printbuffer;
int exponent = 0;
uint8_t pos = 0;
double e1 = 10;
double e2 = 0.1;
// scale to multiples of em.
for (uint8_t i = 1; i < em; i++)
{
e1 *= 10;
e2 *= 0.1;
}
// Handling these costs 13 bytes RAM
// shorten them with N, I, -I ?
if (isnan(value))
{
strcpy(buffer, "nan");
return buffer;
}
if (isinf(value))
{
if (value < 0) strcpy(buffer, "-inf");
strcpy(buffer, "inf");
return buffer;
}
// Handle negative numbers
if (value < 0.0)
{
buffer[pos++] = '-';
value = -value;
}
// Scale exponent to multiple of em
// TODO: can we remove loop to reduce rounding errors
while (value >= e1)
{
value *= e2;
exponent += em;
}
// TODO: can we remove loop to reduce rounding errors
while (value < 1 && value != 0.0)
{
value *= e1;
exponent -= em;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
// TODO: can we remove loop to reduce rounding errors?
// additional loop that steps per 1000?
for (uint8_t i = 0; i < decimals; ++i)
{
rounding *= 0.1;
}
value += rounding;
if (value >= e1)
{
exponent += em;
value *= e2;
}
// Split whole part and remainder
uint32_t d = (uint32_t)value;
double remainder = value - d;
// print whole part
#if defined(ESP32)
// ESP32 does not support %ld or ltoa()
itoa(d, &buffer[pos], 10);
#else
sprintf(&buffer[pos], "%ld", d);
#endif
pos = strlen(buffer);
// print remainder part
if (decimals > 0)
{
buffer[pos++] = '.'; // decimal point
}
// Extract decimals from the remainder one at a time
// to prevent missing leading zero's
while (decimals-- > 0)
{
remainder *= 10;
d = (uint8_t)remainder;
buffer[pos++] = d + '0';
remainder -= d;
}
// print exponent
buffer[pos++] = 'E';
if (exponent < 0)
{
buffer[pos++] = '-';
exponent = -exponent;
}
else buffer[pos++] = '+';
if (exponent < 10) buffer[pos++] = '0';
itoa(exponent, &buffer[pos], 10);
return buffer;
}
char * eng(double value, uint8_t decimals)
{
return scieng(value, decimals, 3);
}
char * sci(double value, uint8_t decimals)
{
return scieng(value, decimals, 1);
}
size_t sci(Stream &str, double value, uint8_t decimals)
{
return str.print(sci(value, decimals));
}
////////////////////////////////////////////////////////////
//
// toBytes
//
// official support to UDA == 1024^12
// kilo mega giga tera peta exa (1024^6)
// zetta yotta xona weka vunda uda (1024^12)
//
// (treda Byte == TDB is the next one and it is 2 char
// so code wise difficult and as it is seldom used, support stops there.
//
// To have some support the code uses lowercase for the next 8 levels
// treda sorta rinta quexa pepta ocha nena minga luma (1024 ^13 ~~ 1024^21)
//
char * toBytes(double value, uint8_t decimals)
{
char * buffer = __printbuffer;
// to enable full range uncomment the following line
// char units[] = " KMGTPEZYXWVUtsrqponml";
char units[] = " KMGTPEZYXWVU";
uint8_t i = 0; // i is index of the unit array == powers of 1024.
if (isinf(value))
{
strcpy(buffer, "<inf>");
return buffer;
}
while(value >= 1024)
{
value /= 1024;
i++;
}
if (i == 0) decimals = 0;
if (decimals > 3) decimals = 3;
// WHOLE PART iv
int integerPart = value;
itoa(integerPart, &buffer[0], 10);
// DECIMALS
value -= integerPart;
uint8_t pos = strlen(buffer);
if (decimals > 0)
{
buffer[pos++] = '.';
while (decimals-- > 0)
{
value = value * 10;
buffer[pos++] = '0' + int(value);
value -= int(value);
}
}
// UNITS
if (i <= strlen(units))
{
if (i > 0) buffer[pos++] = ' ';
buffer[pos++] = units[i];
buffer[pos++] = 'B';
buffer[pos] = 0;
}
else
{
// no units available
}
return buffer;
}
////////////////////////////////////////////////////////////
//
// HEX
//
// always leading zero's - no prefix - no separator
char * hex(uint64_t value, uint8_t digits)
{
uint64_t val = value;
char * buffer = __printbuffer;
buffer[digits] = '\0';
while (digits > 0)
{
uint8_t v = val & 0x0F;
val >>= 4;
digits--;
buffer[digits] = (v < 10) ? '0' + v : ('A' - 10) + v;
}
return buffer;
}
// faster than 64 bit.
char * hex(uint32_t value, uint8_t digits)
{
uint32_t val = value;
char * buffer = __printbuffer;
buffer[digits] = '\0';
while (digits > 0)
{
uint8_t v = val & 0x0F;
val >>= 4;
digits--;
buffer[digits] = (v < 10) ? '0' + v : ('A' - 10) + v;
}
return buffer;
}
char * hex(uint16_t value, uint8_t digits) { return hex((uint32_t) value, digits); };
char * hex(uint8_t value, uint8_t digits) { return hex((uint32_t) value, digits); };
////////////////////////////////////////////////////////////
//
// BIN
//
// always leading zero's - no prefix - no separator
char * bin(uint64_t value, uint8_t digits)
{
uint64_t val = value;
char * buffer = __printbuffer;
buffer[digits] = '\0';
while (digits > 0)
{
digits--;
buffer[digits] = '0' + (val & 1);
val >>= 1;
}
return buffer;
}
// faster than 64 bit.
char * bin(uint32_t value, uint8_t digits)
{
uint64_t val = value;
char * buffer = __printbuffer;
buffer[digits] = '\0';
while (digits > 0)
{
digits--;
buffer[digits] = '0' + (val & 1);
val >>= 1;
}
return buffer;
}
char * bin(uint16_t value, uint8_t digits) { return bin((uint32_t) value, digits); };
char * bin(uint8_t value, uint8_t digits) { return bin((uint32_t) value, digits); };
////////////////////////////////////////////////////////////
//
// toRoman
//
// extended with 10K units generated with the same but lower case chars.
// would expect a special char for 5000?
// need investigation.
char * toRoman(uint32_t value)
{
char * buffer = __printbuffer;
uint32_t val = value;
uint16_t n[13] = { 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 };
char roman[13][3] = { "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I" };
buffer[0] = 0;
int idx = 0;
if (value == 0)
{
strcat(buffer, "N"); // NULL
return buffer;
}
if (value > 100000000UL)
{
strcat(buffer, "OVF"); // overflow
return buffer;
}
if (val >= 10000UL)
{
// 10K units
while(val >= 10000UL)
{
while (val >= (10000UL * n[idx]))
{
strcat(buffer, roman[idx]);
val -= (10000UL * n[idx]);
};
idx++;
}
// set chars to lower
for (uint16_t i = 0; i < strlen(buffer); i++)
{
buffer[i] = tolower(buffer[i]);
}
}
// Official part UPPER case letters
while(val > 0)
{
while (val >= n[idx])
{
strcat(buffer, roman[idx]);
val -= n[idx];
};
idx++;
}
return buffer;
}
////////////////////////////////////////////////////////////
//
// Distances
// Experimental
// step == 2,4,8,16,32,64,128,256 (default 16)
char * printInch(float inch, uint16_t step)
{
char * buffer = __printbuffer;
uint32_t whole = inch;
uint8_t num = round((inch - whole) * step);
if (num == step)
{
whole++;
num = 0;
}
uint8_t den = step;
// optional reduce
while ((num > 0) && ((num & 1) == 0))
{
num >>= 1;
den >>= 1;
}
#if defined(ESP32)
// ESP32 does not support %ld or ltoa()
sprintf(buffer, "%d %d/%d", whole, num, den);
#else
sprintf(buffer, "%ld %d/%d", whole, num, den);
#endif
return buffer;
}
char * printFeet(float feet)
{
char * buffer = __printbuffer;
uint32_t ft = feet;
uint8_t inch = round((feet - ft) * 12);
if (inch == 12)
{
ft++;
inch = 0;
}
#if defined(ESP32)
// ESP32 does not support %ld or ltoa()
sprintf(buffer, "%d\"%d\'", ft, inch);
#else
sprintf(buffer, "%ld\"%d\'", ft, inch);
#endif
return buffer;
}
////////////////////////////////////////////////////////////
//
// Comma Separated Integers
// Experimental
//
// TODO
// - merge if possible 64-32 signed-unsigned
// - performance (use divmod10?)
//
char * csi(int64_t value)
{
char * buffer = __printbuffer;
int index = 0;
bool neg = (value < 0);
if (neg)
{
value = -value;
}
int threeCount = 0;
while (value > 0)
{
buffer[index++] = '0' + value % 10;
value /= 10;
threeCount++;
if ((threeCount == 3) && (value > 0))
{
threeCount = 0;
buffer[index++] = ',';
}
}
if (neg)
{
buffer[index++] = '-';
}
buffer[index--] = 0;
for (int i = 0, j = index; i < j; i++, j--)
{
char t = buffer[j];
buffer[j] = buffer[i];
buffer[i] = t;
}
return buffer;
}
char * csi(int32_t value)
{
char * buffer = __printbuffer;
int index = 0;
bool neg = (value < 0);
if (neg)
{
value = -value;
}
int threeCount = 0;
while (value > 0)
{
buffer[index++] = '0' + value % 10;
value /= 10;
threeCount++;
if ((threeCount == 3) && (value > 0))
{
threeCount = 0;
buffer[index++] = ',';
}
}
if (neg)
{
buffer[index++] = '-';
}
buffer[index--] = 0;
for (int i = 0, j = index; i < j; i++, j--)
{
char t = buffer[j];
buffer[j] = buffer[i];
buffer[i] = t;
}
return buffer;
}
char * csi(int16_t value)
{
return csi((int32_t)value);
}
char * csi(int8_t value)
{
return csi((int32_t)value);
}
char * csi(uint64_t value)
{
char * buffer = __printbuffer;
int index = 0;
int threeCount = 0;
while (value > 0)
{
buffer[index++] = '0' + value % 10;
value /= 10;
threeCount++;
if ((threeCount == 3) && (value > 0))
{
threeCount = 0;
buffer[index++] = ',';
}
}
buffer[index--] = 0;
for (int i = 0, j = index; i < j; i++, j--)
{
char t = buffer[j];
buffer[j] = buffer[i];
buffer[i] = t;
}
return buffer;
}
char * csi(uint32_t value)
{
char * buffer = __printbuffer;
int index = 0;
int threeCount = 0;
while (value > 0)
{
buffer[index++] = '0' + value % 10;
value /= 10;
threeCount++;
if ((threeCount == 3) && (value > 0))
{
threeCount = 0;
buffer[index++] = ',';
}
}
buffer[index--] = 0;
for (int i = 0, j = index; i < j; i++, j--)
{
char t = buffer[j];
buffer[j] = buffer[i];
buffer[i] = t;
}
return buffer;
}
char * csi(uint16_t value)
{
return csi((uint32_t)value);
}
char * csi(uint8_t value)
{
return csi((uint32_t)value);
}
// -- END OF FILE --