2023-09-21 16:39:19 +02:00

333 lines
6.3 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// FILE: SHT31.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.4.0
// DATE: 2019-02-08
// PURPOSE: Arduino library for the SHT31 temperature and humidity sensor
// https://www.adafruit.com/product/2857
// URL: https://github.com/RobTillaart/SHT31
#include "SHT31.h"
// SUPPORTED COMMANDS - single shot mode only
#define SHT31_READ_STATUS 0xF32D
#define SHT31_CLEAR_STATUS 0x3041
#define SHT31_SOFT_RESET 0x30A2
#define SHT31_HARD_RESET 0x0006
#define SHT31_MEASUREMENT_FAST 0x2416 // page 10 datasheet
#define SHT31_MEASUREMENT_SLOW 0x2400 // no clock stretching
#define SHT31_HEAT_ON 0x306D
#define SHT31_HEAT_OFF 0x3066
#define SHT31_HEATER_TIMEOUT 180000UL // milliseconds
SHT31::SHT31(TwoWire *wire)
{
_wire = wire;
_address = 0;
_lastRead = 0;
_rawTemperature = 0;
_rawHumidity = 0;
_heatTimeout = 0;
_heaterStart = 0;
_heaterStop = 0;
_heaterOn = false;
_error = SHT31_OK;
}
#if defined(ESP8266) || defined(ESP32)
bool SHT31::begin(const uint8_t address, const uint8_t dataPin, const uint8_t clockPin)
{
if ((address != 0x44) && (address != 0x45))
{
return false;
}
_address = address;
if ((dataPin < 255) && (clockPin < 255))
{
_wire->begin(dataPin, clockPin);
} else {
_wire->begin();
}
return reset();
}
bool SHT31::begin(const uint8_t dataPin, const uint8_t clockPin)
{
return begin(SHT_DEFAULT_ADDRESS, dataPin, clockPin);
}
#endif
bool SHT31::begin(const uint8_t address)
{
if ((address != 0x44) && (address != 0x45))
{
return false;
}
_address = address;
_wire->begin();
return reset();
}
bool SHT31::read(bool fast)
{
if (writeCmd(fast ? SHT31_MEASUREMENT_FAST : SHT31_MEASUREMENT_SLOW) == false)
{
return false;
}
delay(fast ? 4 : 15); // table 4 datasheet
return readData(fast);
}
bool SHT31::isConnected()
{
_wire->beginTransmission(_address);
int rv = _wire->endTransmission();
if (rv != 0) _error = SHT31_ERR_NOT_CONNECT;
return (rv == 0);
}
#ifdef doc
// bit - description
// ==================
// 15 Alert pending status
// '0': no pending alerts
// '1': at least one pending alert - default
// 14 Reserved 0
// 13 Heater status
// '0 : Heater OFF - default
// '1 : Heater ON
// 12 Reserved '0
// 11 Humidity tracking alert
// '0 : no alert - default
// '1 : alert
// 10 Temp tracking alert
// '0 : no alert - default
// '1 : alert
// 9:5 Reserved '00000
// 4 System reset detected
// '0': no reset since last clear status register command
// '1': reset detected (hard or soft reset command or supply fail) - default
// 3:2 Reserved 00
// 1 Command status
// '0': last command executed successfully
// '1': last command not processed. Invalid or failed checksum
// 0 Write data checksum status
// '0': checksum of last write correct
// '1': checksum of last write transfer failed
#endif
uint16_t SHT31::readStatus()
{
uint8_t status[3] = { 0, 0, 0 };
// page 13 datasheet
if (writeCmd(SHT31_READ_STATUS) == false)
{
return 0xFFFF;
}
// 16 bit status + CRC
if (readBytes(3, (uint8_t*) &status[0]) == false)
{
return 0xFFFF;
}
if (status[2] != crc8(status, 2))
{
_error = SHT31_ERR_CRC_STATUS;
return 0xFFFF;
}
return (uint16_t) (status[0] << 8) + status[1];
}
bool SHT31::reset(bool hard)
{
bool b = writeCmd(hard ? SHT31_HARD_RESET : SHT31_SOFT_RESET);
if (b == false)
{
return false;
}
delay(1); // table 4 datasheet
return true;
}
void SHT31::setHeatTimeout(uint8_t seconds)
{
_heatTimeout = seconds;
if (_heatTimeout > 180) _heatTimeout = 180;
}
bool SHT31::heatOn()
{
if (isHeaterOn()) return true;
if ((_heaterStop > 0) && (millis() - _heaterStop < SHT31_HEATER_TIMEOUT))
{
_error = SHT31_ERR_HEATER_COOLDOWN;
return false;
}
if (writeCmd(SHT31_HEAT_ON) == false)
{
_error = SHT31_ERR_HEATER_ON;
return false;
}
_heaterStart = millis();
_heaterOn = true;
return true;
}
bool SHT31::heatOff()
{
// always switch off the heater - ignore _heaterOn flag.
if (writeCmd(SHT31_HEAT_OFF) == false)
{
_error = SHT31_ERR_HEATER_OFF; // can be serious!
return false;
}
_heaterStop = millis();
_heaterOn = false;
return true;
}
bool SHT31::isHeaterOn()
{
if (_heaterOn == false)
{
return false;
}
// did not exceed time out
if (millis() - _heaterStart < (_heatTimeout * 1000UL))
{
return true;
}
heatOff();
return false;
}
bool SHT31::requestData()
{
if (writeCmd(SHT31_MEASUREMENT_SLOW) == false)
{
return false;
}
_lastRequest = millis();
return true;
}
bool SHT31::dataReady()
{
return ((millis() - _lastRequest) > 15); // TODO MAGIC NR
}
bool SHT31::readData(bool fast)
{
uint8_t buffer[6];
if (readBytes(6, (uint8_t*) &buffer[0]) == false)
{
return false;
}
if (!fast)
{
if (buffer[2] != crc8(buffer, 2))
{
_error = SHT31_ERR_CRC_TEMP;
return false;
}
if (buffer[5] != crc8(buffer + 3, 2))
{
_error = SHT31_ERR_CRC_HUM;
return false;
}
}
_rawTemperature = (buffer[0] << 8) + buffer[1];
_rawHumidity = (buffer[3] << 8) + buffer[4];
_lastRead = millis();
return true;
}
int SHT31::getError()
{
int rv = _error;
_error = SHT31_OK;
return rv;
}
//////////////////////////////////////////////////////////
uint8_t SHT31::crc8(const uint8_t *data, uint8_t len)
{
// CRC-8 formula from page 14 of SHT spec pdf
const uint8_t POLY(0x31);
uint8_t crc(0xFF);
for (uint8_t j = len; j; --j)
{
crc ^= *data++;
for (uint8_t i = 8; i; --i)
{
crc = (crc & 0x80) ? (crc << 1) ^ POLY : (crc << 1);
}
}
return crc;
}
bool SHT31::writeCmd(uint16_t cmd)
{
_wire->beginTransmission(_address);
_wire->write(cmd >> 8 );
_wire->write(cmd & 0xFF);
if (_wire->endTransmission() != 0)
{
_error = SHT31_ERR_WRITECMD;
return false;
}
return true;
}
bool SHT31::readBytes(uint8_t n, uint8_t *val)
{
int rv = _wire->requestFrom(_address, (uint8_t) n);
if (rv == n)
{
for (uint8_t i = 0; i < n; i++)
{
val[i] = _wire->read();
}
return true;
}
_error = SHT31_ERR_READBYTES;
return false;
}
// -- END OF FILE --