GY-63_MS5611/libraries/RunningMedian/RunningMedian.cpp
2021-01-29 12:31:58 +01:00

206 lines
4.9 KiB
C++

//
// FILE: RunningMedian.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.3.3
// PURPOSE: RunningMedian library for Arduino
//
// HISTORY:
// 0.1.00 2011-02-16 initial version
// 0.1.01 2011-02-22 added remarks from CodingBadly
// 0.1.02 2012-03-15 added
// 0.1.03 2013-09-30 added _sorted flag, minor refactor
// 0.1.04 2013-10-17 added getAverage(uint8_t) - kudo's to Sembazuru
// 0.1.05 2013-10-18 fixed bug in sort; removes default constructor; dynamic memory
// 0.1.06 2013-10-19 faster sort, dynamic arrays, replaced sorted float array with indirection array
// 0.1.07 2013-10-19 add correct median if _count is even.
// 0.1.08 2013-10-20 add getElement(), add getSottedElement() add predict()
// 0.1.09 2014-11-25 float to double (support ARM)
// 0.1.10 2015-03-07 fix clear
// 0.1.11 2015-03-29 undo 0.1.10 fix clear
// 0.1.12 2015-07-12 refactor constructor + const
// 0.1.13 2015-10-30 fix getElement(n) - kudos to Gdunge
// 0.1.14 2017-07-26 revert double to float - issue #33
// 0.1.15 2018-08-24 make runningMedian Configurable #110
// 0.2.0 2020-04-16 refactor.
// 0.2.1 2020-06-19 fix library.json
// 0.2.2 2021-01-03 add Arduino-CI + unit tests
// 0.3.0 2021-01-04 malloc memory as default storage
// 0.3.1 2021-01-16 Changed size parameter to 255 max
// 0.3.2 2021-01-21 replaced bubbleSort by insertionSort
// --> better performance for large arrays.
// 0.3.3 2021-01-22 better insertionSort (+ cleanup test code)
#include "RunningMedian.h"
RunningMedian::RunningMedian(const uint8_t size)
{
_size = size;
if (_size < MEDIAN_MIN_SIZE) _size = MEDIAN_MIN_SIZE;
// if (_size > MEDIAN_MAX_SIZE) _size = MEDIAN_MAX_SIZE;
#ifdef RUNNING_MEDIAN_USE_MALLOC
_values = (float *) malloc(_size * sizeof(float));
_sortIdx = (uint8_t *) malloc(_size * sizeof(uint8_t));
#endif
clear();
}
RunningMedian::~RunningMedian()
{
#ifdef RUNNING_MEDIAN_USE_MALLOC
free(_values);
free(_sortIdx);
#endif
}
// resets all internal counters
void RunningMedian::clear()
{
_count = 0;
_index = 0;
_sorted = false;
for (uint8_t i = 0; i < _size; i++)
{
_sortIdx[i] = i;
}
}
// adds a new value to the data-set
// or overwrites the oldest if full.
void RunningMedian::add(float value)
{
_values[_index++] = value;
if (_index >= _size) _index = 0; // wrap around
if (_count < _size) _count++;
_sorted = false;
}
float RunningMedian::getMedian()
{
if (_count == 0) return NAN;
if (_sorted == false) sort();
if (_count & 0x01) // is it odd sized?
{
return _values[_sortIdx[_count / 2]];
}
return (_values[_sortIdx[_count / 2]] + _values[_sortIdx[_count / 2 - 1]]) / 2;
}
float RunningMedian::getQuantile(float q)
{
if (_count == 0) return NAN;
if ((q < 0) || (q > 1)) return NAN;
if (_sorted == false) sort();
const float id = (_count - 1) * q;
const uint8_t lo = floor(id);
const uint8_t hi = ceil(id);
const float qs = _values[_sortIdx[lo]];
const float h = (id - lo);
return (1.0 - h) * qs + h * _values[_sortIdx[hi]];
}
float RunningMedian::getAverage()
{
if (_count == 0) return NAN;
float sum = 0;
for (uint8_t i = 0; i < _count; i++)
{
sum += _values[i];
}
return sum / _count;
}
float RunningMedian::getAverage(uint8_t nMedians)
{
if ((_count == 0) || (nMedians == 0)) return NAN;
if (_count < nMedians) nMedians = _count; // when filling the array for first time
uint8_t start = ((_count - nMedians) / 2);
uint8_t stop = start + nMedians;
if (_sorted == false) sort();
float sum = 0;
for (uint8_t i = start; i < stop; i++)
{
sum += _values[_sortIdx[i]];
}
return sum / nMedians;
}
float RunningMedian::getElement(const uint8_t n)
{
if ((_count == 0) || (n >= _count)) return NAN;
uint8_t pos = _index + n;
if (pos >= _count) // faster than %
{
pos -= _count;
}
return _values[pos];
}
float RunningMedian::getSortedElement(const uint8_t n)
{
if ((_count == 0) || (n >= _count)) return NAN;
if (_sorted == false) sort();
return _values[_sortIdx[n]];
}
// n can be max <= half the (filled) size
float RunningMedian::predict(const uint8_t n)
{
uint8_t mid = _count / 2;
if ((_count == 0) || (n >= mid)) return NAN;
float med = getMedian(); // takes care of sorting !
if (_count & 0x01) // odd # elements
{
return max(med - _values[_sortIdx[mid - n]], _values[_sortIdx[mid + n]] - med);
}
// even # elements
float f1 = (_values[_sortIdx[mid - n]] + _values[_sortIdx[mid - n - 1]]) / 2;
float f2 = (_values[_sortIdx[mid + n]] + _values[_sortIdx[mid + n - 1]]) / 2;
return max(med - f1, f2 - med) / 2;
}
void RunningMedian::sort()
{
// insertSort
for (uint16_t i = 1; i < _count; i++)
{
uint16_t z = i;
uint16_t temp = _sortIdx[z];
while ((z > 0) && (_values[temp] < _values[_sortIdx[z - 1]]))
{
_sortIdx[z] = _sortIdx[z - 1];
z--;
}
_sortIdx[z] = temp;
}
_sorted = true;
}
// -- END OF FILE --