GY-63_MS5611/libraries/ACS712/ACS712.cpp
2022-08-28 09:44:41 +02:00

315 lines
7.7 KiB
C++

//
// FILE: ACS712.cpp
// AUTHOR: Rob Tillaart, Pete Thompson
// VERSION: 0.2.8
// DATE: 2020-08-02
// PURPOSE: ACS712 library - current measurement
//
// HISTORY:
// 0.1.0 2020-03-17 initial version
// 0.1.1 2020-03-18 first release version
// 0.1.2 2020-03-21 automatic form factor test
// 0.1.3 2020-05-27 fix library.json
// 0.1.4 2020-08-02 Allow for faster processors
//
// 0.2.0 2020-08-02 Add autoMidPoint
// 0.2.1 2020-12-06 Add Arduino-CI + readme + unit test + refactor
// 0.2.2 2021-06-23 support for more frequencies.
// 0.2.3 2021-10-15 changed frequencies to float, for optimal tuning.
// updated build CI, readme.md
// 0.2.4 2021-11-22 add experimental detectFrequency()
// 0.2.5 2021-12-03 add timeout to detectFrequency()
// 0.2.6 2021-12-09 update readme.md + license
// 0.2.7 2022-08-10 change mVperAmp to float
// add ACS712_FF_SAWTOOTH
// update readme.md + unit test + minor edits
// 0.2.8 2022-08-19 prepare for 0.3.0
// Fix #21 FormFactor
// add mA_AC_sampling() as method to determine
// current when FormFactor is unknown.
// added float _AmperePerStep cached value.
// added getAmperePerStep();
// moved several functions to .cpp
// improve documentation
//
#include "ACS712.h"
// CONSTRUCTOR
ACS712::ACS712(uint8_t analogPin, float volts, uint16_t maxADC, float mVperAmpere)
{
_pin = analogPin;
_mVperStep = 1000.0 * volts / maxADC; // 1x 1000 for V -> mV
_mVperAmpere = mVperAmpere;
_AmperePerStep = _mVperStep / _mVperAmpere;
_formFactor = ACS712_FF_SINUS;
_midPoint = maxADC / 2;
_noisemV = ACS712_DEFAULT_NOISE; // 21mV according to datasheet
}
// MEASUREMENTS
int ACS712::mA_AC(float frequency, uint16_t cycles)
{
uint16_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
// remove expensive float operation from loop.
uint16_t zeroLevel = round(_noisemV/_mVperStep);
for (uint16_t i = 0; i < cycles; i++)
{
uint16_t samples = 0;
uint16_t zeros = 0;
int _min, _max;
_min = _max = analogRead(_pin);
// find minimum and maximum and count the zero-level "percentage"
uint32_t start = micros();
while (micros() - start < period) // UNO ~180 samples...
{
samples++;
int val = analogRead(_pin);
// determine extremes
if (val < _min) _min = val;
else if (val > _max) _max = val;
// count zeros
if (abs(val - _midPoint) <= zeroLevel ) zeros++;
}
int peak2peak = _max - _min;
// automatic determine _formFactor / crest factor
float D = 0;
float FF = 0;
// TODO uint32_t math? (zeros * 40) > samples
if (zeros > samples * 0.025) // more than 2% zero's
{
D = 1.0 - (1.0 * zeros) / samples; // % SAMPLES NONE ZERO
FF = sqrt(D) * _formFactor; // ASSUME NON ZERO PART ~ SINUS
}
else // # zeros is small => D --> 1 --> sqrt(D) --> 1
{
FF = _formFactor;
}
// value could be partially pre-calculated: C = 1000.0 * 0.5 * _mVperStep / _mVperAmpere;
// return 1000.0 * 0.5 * peak2peak * _mVperStep * _formFactor / _mVperAmpere);
sum += peak2peak * FF;
}
float mA = 500.0 * sum * _AmperePerStep/ cycles;
return round(mA);
}
float ACS712::mA_AC_sampling(float frequency, uint16_t cycles)
{
uint32_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
// float noiseLevel = _noisemV/_mVperStep;
for (uint16_t i = 0; i < cycles; i++)
{
uint16_t samples = 0;
float sumSquared = 0;
uint32_t start = micros();
while (micros() - start < period)
{
samples++;
float current = ((int)analogRead(_pin)) - _midPoint;
sumSquared += (current * current);
// if (abs(current) > noiseLevel)
// {
// sumSquared += (current * current);
// }
}
sum += sqrt(sumSquared / samples);
}
float mA = 1000.0 * sum * _AmperePerStep / cycles;
return mA;
}
int ACS712::mA_DC(uint16_t cycles)
{
// read at least twice to stabilize the ADC
analogRead(_pin);
if (cycles == 0) cycles = 1;
float sum = 0;
for (uint16_t i = 0; i < cycles; i++)
{
sum += analogRead(_pin) - _midPoint;
}
float mA = 1000.0 * sum * _AmperePerStep / cycles;
return round(mA);
}
// CALIBRATION MIDPOINT
void ACS712::setMidPoint(uint16_t midPoint)
{
_midPoint = midPoint;
};
uint16_t ACS712::getMidPoint()
{
return _midPoint;
};
void ACS712::incMidPoint()
{
_midPoint += 1;
};
void ACS712::decMidPoint()
{
_midPoint -= 1;
};
// configure by sampling for 2 cycles of AC
// Also works for DC as long as no current flowing
// note this is blocking!
void ACS712::autoMidPoint(float frequency, uint16_t cycles)
{
uint16_t twoPeriods = round(2000000UL / frequency);
if (cycles == 0) cycles = 1;
uint32_t total = 0;
for (uint16_t i = 0; i < cycles; i++)
{
uint32_t subTotal = 0;
uint32_t samples = 0;
uint32_t start = micros();
while (micros() - start < twoPeriods)
{
uint16_t reading = analogRead(_pin);
subTotal += reading;
samples++;
// Delaying ensures we won't overflow since we'll perform a maximum of 40,000 reads @ 50 Hz.
delayMicroseconds(1);
}
total += (subTotal/samples);
}
_midPoint = total / cycles;
}
// CALIBRATION FORM FACTOR
void ACS712::setFormFactor(float formFactor)
{
_formFactor = formFactor;
};
float ACS712::getFormFactor()
{
return _formFactor;
};
// CALIBRATION NOISE
// noise defaults 21 datasheet
void ACS712::setNoisemV(uint8_t noisemV)
{
_noisemV = noisemV;
};
uint8_t ACS712::getNoisemV()
{
return _noisemV;
};
// CALIBRATION mV PER AMP
// Adjusting resolution AC and DC
void ACS712::setmVperAmp(float mVperAmpere)
{
_mVperAmpere = mVperAmpere;
_AmperePerStep = _mVperStep / _mVperAmpere;
};
float ACS712::getmVperAmp()
{
return _mVperAmpere;
};
float ACS712::getAmperePerStep()
{
return _AmperePerStep;
};
// Frequency detection.
// uses oversampling and averaging to minimize variation
// blocks for substantial amount of time, depending on minimalFrequency
float ACS712::detectFrequency(float minimalFrequency)
{
int maximum = 0;
int minimum = 0;
maximum = minimum = analogRead(_pin);
// determine maxima
uint32_t timeOut = round(1000000.0 / minimalFrequency);
uint32_t start = micros();
while (micros() - start < timeOut)
{
int value = analogRead(_pin);
if (value > maximum) maximum = value;
if (value < minimum) minimum = value;
}
// calculate quarter points
// using quarter points is less noise prone than using one single midpoint
int Q1 = (3 * minimum + maximum ) / 4;
int Q3 = (minimum + 3 * maximum ) / 4;
// 10x passing Quantile points
// wait for the right moment to start
// to prevent endless loop a timeout is checked.
timeOut *= 10;
start = micros();
while ((analogRead(_pin) > Q1) && ((micros() - start) < timeOut));
while ((analogRead(_pin) <= Q3) && ((micros() - start) < timeOut));
start = micros();
for (int i = 0; i < 10; i++)
{
while ((analogRead(_pin) > Q1) && ((micros() - start) < timeOut));
while ((analogRead(_pin) <= Q3) && ((micros() - start) < timeOut));
}
uint32_t stop = micros();
// calculate frequency
float wavelength = stop - start;
float frequency = 1e7 / wavelength;
if (_microsAdjust != 1.0) frequency *= _microsAdjust;
return frequency;
}
// CALIBRATION TIMING
void ACS712::setMicrosAdjust(float factor)
{
_microsAdjust = factor;
};
float ACS712::getMicrosAdjust()
{
return _microsAdjust;
};
// -- END OF FILE --