mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
247 lines
4.7 KiB
C++
247 lines
4.7 KiB
C++
//
|
|
// FILE: Correlation.cpp
|
|
// AUTHOR: Rob Tillaart
|
|
// VERSION: 0.2.0
|
|
// PURPOSE: Arduino Library to determine correlation between X and Y dataset
|
|
//
|
|
// HISTORY:
|
|
// 0.2.0 2021-08-26 Add flags to skip Rsquare and Esquare calculation
|
|
// will improve performance calculate
|
|
// fixed sign of R correlation coefficient
|
|
//
|
|
// 0.1.4 2021-08-26 improve performance calculate
|
|
// 0.1.3 2021-01-16 add size in constructor,
|
|
// add statistical + debug functions
|
|
// 0.1.2 2020-12-17 add arduino-CI + unit tests
|
|
// + size() + getAvgX() + getAvgY()
|
|
// 0.1.1 2020-06-05 fix library.json
|
|
// 0.1.0 2020-05-17 initial version
|
|
|
|
|
|
|
|
#include "Correlation.h"
|
|
|
|
|
|
Correlation::Correlation(uint8_t size)
|
|
{
|
|
_size = 20;
|
|
if (size > 0) _size = size;
|
|
_x = (float *) malloc(_size * sizeof(float));
|
|
_y = (float *) malloc(_size * sizeof(float));
|
|
clear();
|
|
}
|
|
|
|
|
|
Correlation::~Correlation()
|
|
{
|
|
if (_x) free(_x);
|
|
if (_y) free(_y);
|
|
}
|
|
|
|
|
|
void Correlation::clear()
|
|
{
|
|
_count = 0;
|
|
_idx = 0;
|
|
_needRecalculate = true;
|
|
_runningMode = false;
|
|
_avgX = 0;
|
|
_avgY = 0;
|
|
_a = 0;
|
|
_b = 0;
|
|
_r = 0;
|
|
_sumErrorSquare = 0;
|
|
_sumXiYi = 0;
|
|
_sumXi2 = 0;
|
|
_sumYi2 = 0;
|
|
_doR2 = true;
|
|
_doE2 = true;
|
|
}
|
|
|
|
|
|
bool Correlation::add(float x, float y)
|
|
{
|
|
if ( (_count < _size) || _runningMode)
|
|
{
|
|
_x[_idx] = x;
|
|
_y[_idx] = y;
|
|
_idx++;
|
|
if (_idx >= _size) _idx = 0;
|
|
if (_count < _size) _count++;
|
|
_needRecalculate = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Correlation::calculate(bool forced)
|
|
{
|
|
if (_count == 0) return false;
|
|
if (! (_needRecalculate || forced)) return true;
|
|
|
|
// CALC AVERAGE X, AVERAGE Y
|
|
float avgx = 0;
|
|
float avgy = 0;
|
|
for (uint8_t i = 0; i < _count; i++)
|
|
{
|
|
avgx += _x[i];
|
|
avgy += _y[i];
|
|
}
|
|
avgx /= _count;
|
|
avgy /= _count;
|
|
|
|
_avgX = avgx;
|
|
_avgY = avgy;
|
|
|
|
// CALC A and B ==> formula Y = A + B*X
|
|
float sumXiYi = 0;
|
|
float sumXi2 = 0;
|
|
float sumYi2 = 0;
|
|
for (uint8_t i = 0; i < _count; i++)
|
|
{
|
|
float xi = _x[i] - avgx;
|
|
float yi = _y[i] - avgy;
|
|
sumXiYi += (xi * yi);
|
|
sumXi2 += (xi * xi);
|
|
sumYi2 += (yi * yi);
|
|
}
|
|
float b = sumXiYi / sumXi2;
|
|
float a = avgy - b * avgx;
|
|
|
|
_a = a;
|
|
_b = b;
|
|
_sumXiYi = sumXiYi;
|
|
_sumXi2 = sumXi2;
|
|
_sumYi2 = sumYi2;
|
|
|
|
if (_doR2 == true)
|
|
{
|
|
// R is calculated instead of rSquared so we do not loose the sign.
|
|
// Rsquare from R is much faster than R from Rsquare.
|
|
_r = sumXiYi / sqrt(sumXi2 * sumYi2);
|
|
}
|
|
|
|
if (_doE2 == true)
|
|
{
|
|
float sumErrorSquare = 0;
|
|
for (uint8_t i = 0; i < _count; i++)
|
|
{
|
|
float EY = a + b * _x[i];
|
|
float ei = _y[i] - EY;
|
|
sumErrorSquare += (ei * ei);
|
|
}
|
|
_sumErrorSquare = sumErrorSquare;
|
|
}
|
|
_needRecalculate = false;
|
|
return true;
|
|
}
|
|
|
|
|
|
float Correlation::getEstimateY(float x)
|
|
{
|
|
if (_count == 0) return NAN;
|
|
if (_needRecalculate) calculate();
|
|
return _a + _b * x;
|
|
}
|
|
|
|
|
|
float Correlation::getEstimateX(float y)
|
|
{
|
|
if (_count == 0) return NAN;
|
|
if (_needRecalculate) calculate();
|
|
return (y - _a) / _b;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
//
|
|
// STATISTICAL
|
|
//
|
|
float Correlation::getMaxX()
|
|
{
|
|
if (_count == 0) return NAN;
|
|
float rv = _x[0];
|
|
for (uint8_t i = 1; i < _count; i++)
|
|
{
|
|
if (_x[i] > rv) rv = _x[i];
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
float Correlation::getMinX()
|
|
{
|
|
if (_count == 0) return NAN;
|
|
float rv = _x[0];
|
|
for (uint8_t i = 1; i < _count; i++)
|
|
{
|
|
if (_x[i] < rv) rv = _x[i];
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
float Correlation::getMaxY()
|
|
{
|
|
if (_count == 0) return NAN;
|
|
float rv = _y[0];
|
|
for (uint8_t i = 1; i < _count; i++)
|
|
{
|
|
if (_y[i] > rv) rv = _y[i];
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
float Correlation::getMinY()
|
|
{
|
|
if (_count == 0) return NAN;
|
|
float rv = _y[0];
|
|
for (uint8_t i = 1; i < _count; i++)
|
|
{
|
|
if (_y[i] < rv) rv = _y[i];
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////
|
|
//
|
|
// DEBUGGING - access to internal arrays.
|
|
//
|
|
bool Correlation::setXY(uint8_t idx, float x, float y)
|
|
{
|
|
if (idx >= _count) return false;
|
|
_x[idx] = x;
|
|
_y[idx] = y;
|
|
_needRecalculate = true;
|
|
return true;
|
|
}
|
|
|
|
bool Correlation::setX(uint8_t idx, float x)
|
|
{
|
|
if (idx >= _count) return false;
|
|
_x[idx] = x;
|
|
_needRecalculate = true;
|
|
return true;
|
|
}
|
|
|
|
float Correlation::getX(uint8_t idx)
|
|
{
|
|
if (idx >= _count) return NAN;
|
|
return _x[idx];
|
|
}
|
|
|
|
bool Correlation::setY(uint8_t idx, float y)
|
|
{
|
|
if (idx >= _count) return false;
|
|
_y[idx] = y;
|
|
_needRecalculate = true;
|
|
return true;
|
|
}
|
|
|
|
float Correlation::getY(uint8_t idx)
|
|
{
|
|
if (idx > _count) return NAN;
|
|
return _y[idx];
|
|
}
|
|
|
|
// -- END OF FILE --
|