GY-63_MS5611/libraries/MTP40C/MTP40C.cpp
2023-07-31 17:39:01 +02:00

460 lines
11 KiB
C++

//
// FILE: MTP40C.cpp
// AUTHOR: Rob Tillaart
// DATE: 2021-08-20
// VERSION: 0.3.0
// PURPOSE: Arduino library for MTP40C MTP40D CO2 sensor
// URL: https://github.com/RobTillaart/MTP40C
#include "MTP40C.h"
// debug flag, development.
// #define MTP40_DEBUG 1
MTP40::MTP40(Stream * str)
{
_ser = str;
_buffer[0] = '\0';
_type = 0xFF;
}
bool MTP40::begin(uint8_t address)
{
if (address > 247) return false;
_useAddress = false;
_timeout = 100;
_lastRead = 0;
_airPressureReference = 0;
_gasLevel = 0;
_address = address;
_suppressError = false;
return isConnected();
}
bool MTP40::isConnected()
{
uint8_t addr = getAddress();
return (addr == _address);
}
uint8_t MTP40::getAddress()
{
uint8_t cmd[8] = { 0xFE, 0x03, 0x14, 0x00, 0x01, 0x00, 0x55, 0xA5 };
if (request(cmd, 8, 7) )
{
_address = _buffer[3];
return _buffer[3];
}
return MTP40_INVALID_ADDRESS;
}
bool MTP40::setAddress(uint8_t address)
{
if (address > 247) return false;
uint8_t cmd[11] = { 0xFE, 0x10, 0x04, 0x00, 0x01, 0x00, 0x01, 0x60, 0x00, 0x42, 0x58 };
cmd[0] = _address;
cmd[7] = address;
if (request(cmd, 11, 8) )
{
_address = address;
return true;
}
return false;
}
float MTP40::getAirPressureReference()
{
union
{
float value;
uint8_t b[4];
} convert;
_lastError = MTP40_OK;
// max read freq 1x per 4 seconds
if (millis() - _lastRead < 4000) return _airPressureReference; // last value
_lastRead = millis();
uint8_t cmd[5] = { 0xFE, 0x68, 0x01, 0xFE, 0x30 };
if (request(cmd, 5, 10))
{
for (uint8_t i = 0; i < 4; i++)
{
convert.b[i] = _buffer[4 + i];
}
_airPressureReference = convert.value;
return _airPressureReference;
}
_lastError = MTP40_INVALID_AIR_PRESSURE;
if (_suppressError) return _airPressureReference;
return _lastError;
}
bool MTP40::setAirPressureReference(float apr)
{
if ((apr < 700) || (apr > 1100)) return false;
union
{
float value;
uint8_t b[4];
} convert;
uint8_t cmd[10] = { 0xFE, 0x67, 0x01, 0x01, 0x00, 0x40, 0x7D, 0x44, 0xC4, 0xA3 };
convert.value = apr;
for (uint8_t i = 0; i < 4; i++)
{
cmd[4 + i] = convert.b[i];
}
if (request(cmd, 10, 10) )
{
return true;
}
return false;
}
uint16_t MTP40::getGasConcentration()
{
_lastError = MTP40_OK;
// max read freq 1x per 4 seconds
if (millis() - _lastRead < 4000) return _gasLevel; // last value
_lastRead = millis();
uint8_t cmd[5] = { 0xFE, 0x69, 0x03, 0x7E, 0x61 };
if (request(cmd, 5, 14) )
{
// check valid
for (uint8_t i = 8; i < 12; i++)
{
if (_buffer[i] != 0) return 0;
}
_gasLevel = _buffer[5] *256 + _buffer[4];
return _gasLevel;
}
_lastError = MTP40_INVALID_GAS_LEVEL;
if (_suppressError) return _gasLevel;
return _lastError;
}
bool MTP40::setSinglePointCorrection(float spc)
{
if ((spc < 400) || (spc > 5000)) return false;
union
{
float value;
uint8_t b[4];
} convert;
uint8_t cmd[9] = { 0xFE, 0x28, 0x80, 0x00, 0x80, 0x40, 0x44, 0x33, 0x22 };
convert.value = spc;
for (uint8_t i = 0; i < 4; i++)
{
cmd[3 + i] = convert.b[i];
}
if (request(cmd, 9, 10) )
{
if (_buffer[7] ) return true;
}
return false;
}
bool MTP40::getSinglePointCorrectionReady()
{
uint8_t cmd[5] = { 0xFE, 0x28, 0x81, 0xCE, 0x50 };
if (request(cmd, 5, 6) )
{
if (_buffer[3] == 0) return true;
}
return false;
}
bool MTP40::openSelfCalibration()
{
uint8_t cmd[6] = { 0xFE, 0x28, 0x66, 0xFF, 0xDA, 0x24 };
if (request(cmd, 6, 6) )
{
return true;
}
return false;
}
bool MTP40::closeSelfCalibration()
{
uint8_t cmd[6] = { 0xFE, 0x28, 0x66, 0x00, 0x9A, 0x64 };
if (request(cmd, 6, 6) )
{
return true;
}
return false;
}
uint8_t MTP40::getSelfCalibrationStatus()
{
uint8_t cmd[5] = { 0xFE, 0x28, 0x67, 0x4F, 0xDA };
if (request(cmd, 5, 6) )
{
return _buffer[3];
}
return 0x02;
}
bool MTP40::setSelfCalibrationHours(uint16_t hours)
{
if ((hours < 24) || (hours > 720)) return false;
uint8_t cmd[7] = { 0xFE, 0x28, 0x6A, 0x64, 0x00, 0x0E, 0xA8 };
cmd[4] = hours & 0xFF;
cmd[5] = hours / 256;
if (request(cmd, 7, 6) )
{
return (_buffer[3] == 0x00);
}
return false;
}
uint16_t MTP40::getSelfCalibrationHours()
{
uint8_t cmd[5] = { 0xFE, 0x28, 0x69, 0xCE, 0x1E };
if (request(cmd, 5, 9) )
{
return _buffer[4] * 256 + _buffer[3];
}
return 0xFFFF; // to indicate error.
}
int MTP40::lastError()
{
int e = _lastError;
_lastError = MTP40_OK;
return e;
}
//////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
bool MTP40::request(uint8_t *data, uint8_t commandLength, uint8_t answerLength)
{
// generic or specific address
if (_useAddress)
{
data[0] = _address;
}
else
{
data[0] = 0xFE; // broadcast
}
// calculate CRC of command
uint16_t crc = CRC(data, commandLength - 2);
data[commandLength - 1] = crc / 256;
data[commandLength - 2] = crc & 0xFF;
while (commandLength--)
{
#ifdef MTP40_DEBUG
if (*data < 0x10) _ser->print(0);
_ser->print(*data++, HEX);
_ser->print(" ");
#else
_ser->write(*data++);
#endif
yield(); // because baud rate is low!
}
uint32_t start = millis();
uint8_t i = 0;
while (answerLength)
{
if (millis() - start > _timeout) return false;
if (_ser->available())
{
_buffer[i] = _ser->read();
i++;
answerLength--;
}
yield(); // because baud rate is low!
}
return true;
}
/////////////////////////////////////////////////////////////
//
// CRC
//
#if defined(ARDUINO_ARCH_AVR) || defined(ARDUINO_ARCH_MEGAAVR)
// derived from https://github.com/RobTillaart/CRC 0.3.3
uint16_t MTP40::CRC(uint8_t *array, uint16_t length)
{
// parameters MODBUS
const uint16_t polynome = 0x8005;
const uint16_t startmask = 0xFFFF;
const uint16_t endmask = 0x0000;
const bool reverseIn = true;
const bool reverseOut = true;
// start
uint16_t crc = startmask;
while (length--)
{
if ((length & 0xFF) == 0) yield(); // RTOS
uint8_t data = *array++;
if (reverseIn) data = reverse8(data);
crc ^= ((uint16_t)data) << 8;
for (uint8_t i = 8; i; i--)
{
if (crc & (1 << 15))
{
crc <<= 1;
crc ^= polynome;
}
else
{
crc <<= 1;
}
}
}
if (reverseOut) crc = reverse16(crc);
crc ^= endmask;
return crc;
}
uint8_t MTP40::reverse8(uint8_t in)
{
uint8_t x = in;
x = (((x & 0xAA) >> 1) | ((x & 0x55) << 1));
x = (((x & 0xCC) >> 2) | ((x & 0x33) << 2));
x = ((x >> 4) | (x << 4));
return x;
}
uint16_t MTP40::reverse16(uint16_t in)
{
uint16_t x = in;
x = (((x & 0XAAAA) >> 1) | ((x & 0X5555) << 1));
x = (((x & 0xCCCC) >> 2) | ((x & 0X3333) << 2));
x = (((x & 0xF0F0) >> 4) | ((x & 0X0F0F) << 4));
x = (( x >> 8) | (x << 8));
return x;
}
#else
// from datasheet
uint16_t MTP40::CRC(uint8_t *data, uint16_t len)
{
// auchCRCHi contains 2 repeating patterns
// 0x00, 0xC1, 0x81, 0x40
// 0x01, 0xC0, 0x80, 0x41
// check CRC lib MODBUS polynome (slower and smaller).
const uint8_t auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
};
const uint8_t auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40
};
uint8_t uchCRCHi = 0xFF ; // High byte initialization of the CRC
uint8_t uchCRCLo = 0xFF ; // The low byte of the CRC is initialized
uint16_t uIndex; // Query the CRC table index
uint16_t crc;
while (len--) // Complete the entire message buffer
{
uIndex = uchCRCLo ^ *data++; // Calculate CRC
uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex];
uchCRCHi = auchCRCLo[uIndex];
}
crc = (uint16_t)uchCRCHi * 256;
crc += (uint16_t)uchCRCLo;
return crc;
}
#endif
/////////////////////////////////////////////////////////////
//
// DERIVED CLASSES
//
MTP40C::MTP40C(Stream * str) : MTP40(str)
{
_type = 2;
};
MTP40D::MTP40D(Stream * str) : MTP40(str)
{
_type = 3;
};
// -- END OF FILE --