GY-63_MS5611/libraries/MS5611_SPI/MS5611_SPI.cpp
2023-11-30 12:18:19 +01:00

472 lines
9.7 KiB
C++

//
// FILE: MS5611_SPI.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.2.0
// PURPOSE: MS5611 (SPI) Temperature & Pressure library for Arduino
// URL: https://github.com/RobTillaart/MS5611_SPI
//
// HISTORY: see changelog.md
#include "MS5611_SPI.h"
// datasheet page 10
#define MS5611_CMD_READ_ADC 0x00
#define MS5611_CMD_READ_PROM 0xA0
#define MS5611_CMD_RESET 0x1E
#define MS5611_CMD_CONVERT_D1 0x40
#define MS5611_CMD_CONVERT_D2 0x50
/////////////////////////////////////////////////////
//
// PUBLIC
//
MS5611_SPI::MS5611_SPI(uint8_t select, __SPI_CLASS__ * mySPI)
{
// _address = deviceAddress; // TODO
_samplingRate = OSR_ULTRA_LOW;
_temperature = MS5611_NOT_READ;
_pressure = MS5611_NOT_READ;
_result = MS5611_NOT_READ;
_lastRead = 0;
_deviceID = 0;
_pressureOffset = 0;
_temperatureOffset = 0;
_compensation = true;
// SPI
_select = select;
_dataIn = 255;
_dataOut = 255;
_clock = 255;
_hwSPI = true;
_mySPI = mySPI;
}
MS5611_SPI::MS5611_SPI(uint8_t select, uint8_t dataOut, uint8_t dataIn, uint8_t clock)
{
// _address = deviceAddress; // TODO
_samplingRate = OSR_ULTRA_LOW;
_temperature = MS5611_NOT_READ;
_pressure = MS5611_NOT_READ;
_result = MS5611_NOT_READ;
_lastRead = 0;
_deviceID = 0;
_pressureOffset = 0;
_temperatureOffset = 0;
_compensation = false;
// SPI
_select = select;
_dataIn = dataIn;
_dataOut = dataOut;
_clock = clock;
_hwSPI = false;
_mySPI = NULL;
}
bool MS5611_SPI::begin()
{
// print experimental message.
// Serial.println(MS5611_SPI_LIB_VERSION);
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
setSPIspeed(_SPIspeed);
if(_hwSPI)
{
_mySPI->begin(); // FIX #6
_mySPI->end();
_mySPI->begin();
delay(1);
}
else
{
// Serial.println("SW_SPI");
pinMode(_dataIn, INPUT);
pinMode(_dataOut, OUTPUT);
pinMode(_clock, OUTPUT);
digitalWrite(_dataOut, LOW);
digitalWrite(_clock, LOW);
}
return reset();
}
bool MS5611_SPI::isConnected()
{
int rv = read();
return (rv == MS5611_READ_OK);
}
bool MS5611_SPI::reset(uint8_t mathMode)
{
command(MS5611_CMD_RESET);
uint32_t start = micros();
// while loop prevents blocking RTOS
while (micros() - start < 3000) // increased as first ROM values were missed.
{
yield();
delayMicroseconds(10);
}
// initialize the C[] array
initConstants(mathMode);
// read factory calibrations from EEPROM.
bool ROM_OK = true;
for (uint8_t reg = 0; reg < 7; reg++)
{
// used indices match datasheet.
// C[0] == manufacturer - read but not used;
// C[7] == CRC - skipped.
uint16_t tmp = readProm(reg);
C[reg] *= tmp;
// _deviceID is a simple SHIFT XOR merge of PROM data
_deviceID <<= 4;
_deviceID ^= tmp;
// Serial.println(readProm(reg));
if (reg > 0)
{
ROM_OK = ROM_OK && (tmp != 0);
}
}
return ROM_OK;
}
int MS5611_SPI::read(uint8_t bits)
{
// VARIABLES NAMES BASED ON DATASHEET
// ALL MAGIC NUMBERS ARE FROM DATASHEET
convert(MS5611_CMD_CONVERT_D1, bits);
// NOTE: D1 and D2 seem reserved in MBED (NANO BLE)
uint32_t _D1 = readADC();
convert(MS5611_CMD_CONVERT_D2, bits);
uint32_t _D2 = readADC();
// Serial.println(_D1);
// Serial.println(_D2);
// TEST VALUES - comment lines above
// uint32_t _D1 = 9085466;
// uint32_t _D2 = 8569150;
// TEMP & PRESS MATH - PAGE 7/20
float dT = _D2 - C[5];
_temperature = 2000 + dT * C[6];
float offset = C[2] + dT * C[4];
float sens = C[1] + dT * C[3];
if (_compensation)
{
// SECOND ORDER COMPENSATION - PAGE 8/20
// COMMENT OUT < 2000 CORRECTION IF NOT NEEDED
// NOTE TEMPERATURE IS IN 0.01 C
if (_temperature < 2000)
{
float T2 = dT * dT * 4.6566128731E-10;
float t = (_temperature - 2000) * (_temperature - 2000);
float offset2 = 2.5 * t;
float sens2 = 1.25 * t;
// COMMENT OUT < -1500 CORRECTION IF NOT NEEDED
if (_temperature < -1500)
{
t = (_temperature + 1500) * (_temperature + 1500);
offset2 += 7 * t;
sens2 += 5.5 * t;
}
_temperature -= T2;
offset -= offset2;
sens -= sens2;
}
// END SECOND ORDER COMPENSATION
}
_pressure = (_D1 * sens * 4.76837158205E-7 - offset) * 3.051757813E-5;
_lastRead = millis();
return MS5611_READ_OK;
}
void MS5611_SPI::setOversampling(osr_t samplingRate)
{
_samplingRate = (uint8_t) samplingRate;
}
osr_t MS5611_SPI::getOversampling() const
{
return (osr_t) _samplingRate;
}
float MS5611_SPI::getTemperature() const
{
if (_temperatureOffset == 0) return _temperature * 0.01;
return _temperature * 0.01 + _temperatureOffset;
}
float MS5611_SPI::getPressure() const
{
if (_pressureOffset == 0) return _pressure * 0.01;
return _pressure * 0.01 + _pressureOffset;
}
void MS5611_SPI::setPressureOffset(float offset)
{
_pressureOffset = offset;
}
float MS5611_SPI::getPressureOffset()
{
return _pressureOffset;
}
void MS5611_SPI::setTemperatureOffset(float offset)
{
_temperatureOffset = offset;
}
float MS5611_SPI::getTemperatureOffset()
{
return _temperatureOffset;
}
int MS5611_SPI::getLastResult() const
{
return _result;
}
uint32_t MS5611_SPI::lastRead() const
{
return _lastRead;
}
uint32_t MS5611_SPI::getDeviceID() const
{
return _deviceID;
}
void MS5611_SPI::setCompensation(bool flag)
{
_compensation = flag;
}
bool MS5611_SPI::getCompensation()
{
return _compensation;
}
// EXPERIMENTAL
uint16_t MS5611_SPI::getManufacturer()
{
return readProm(0);
}
// EXPERIMENTAL
uint16_t MS5611_SPI::getSerialCode()
{
return readProm(7) >> 4;
}
void MS5611_SPI::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);
}
uint32_t MS5611_SPI::getSPIspeed()
{
return _SPIspeed;
}
bool MS5611_SPI::usesHWSPI()
{
return _hwSPI;
}
/////////////////////////////////////////////////////
//
// PRIVATE
//
void MS5611_SPI::convert(const uint8_t addr, uint8_t bits)
{
// values from page 3 datasheet - MAX column (rounded up)
uint16_t del[5] = {600, 1200, 2300, 4600, 9100};
uint8_t index = bits;
if (index < 8) index = 8;
else if (index > 12) index = 12;
index -= 8;
uint8_t offset = index * 2;
command(addr + offset);
uint16_t waitTime = del[index];
uint32_t start = micros();
// while loop prevents blocking RTOS
while (micros() - start < waitTime)
{
yield();
delayMicroseconds(10);
}
}
uint16_t MS5611_SPI::readProm(uint8_t reg)
{
// last EEPROM register is CRC - Page 13 datasheet.
uint8_t promCRCRegister = 7;
if (reg > promCRCRegister) return 0;
uint16_t value = 0;
digitalWrite(_select, LOW);
if (_hwSPI)
{
_mySPI->beginTransaction(_spi_settings);
_mySPI->transfer(MS5611_CMD_READ_PROM + reg * 2);
value += _mySPI->transfer(0x00);
value <<= 8;
value += _mySPI->transfer(0x00);
_mySPI->endTransaction();
}
else // Software SPI
{
swSPI_transfer(MS5611_CMD_READ_PROM + reg * 2);
value += swSPI_transfer(0x00);
value <<= 8;
value += swSPI_transfer(0x00);
}
digitalWrite(_select, HIGH);
return value;
}
uint32_t MS5611_SPI::readADC()
{
// command(MS5611_CMD_READ_ADC);
uint32_t value = 0;
digitalWrite(_select, LOW);
if (_hwSPI)
{
_mySPI->beginTransaction(_spi_settings);
_mySPI->transfer(0x00);
value += _mySPI->transfer(0x00);
value <<= 8;
value += _mySPI->transfer(0x00);
value <<= 8;
value += _mySPI->transfer(0x00);
_mySPI->endTransaction();
}
else // Software SPI
{
swSPI_transfer(0x00);
value += swSPI_transfer(0x00);
value <<= 8;
value += swSPI_transfer(0x00);
value <<= 8;
value += swSPI_transfer(0x00);
}
digitalWrite(_select, HIGH);
// Serial.println(value, HEX);
return value;
}
int MS5611_SPI::command(const uint8_t command)
{
yield();
digitalWrite(_select, LOW);
if (_hwSPI)
{
_mySPI->beginTransaction(_spi_settings);
_mySPI->transfer(command);
_mySPI->endTransaction();
}
else // Software SPI
{
swSPI_transfer(command);
}
digitalWrite(_select, HIGH);
return 0;
}
// simple one mode version
uint8_t MS5611_SPI::swSPI_transfer(uint8_t val)
{
uint8_t clk = _clock;
uint8_t dao = _dataOut;
uint8_t dai = _dataIn;
uint8_t value = 0;
for (uint8_t mask = 0x80; mask; mask >>= 1)
{
digitalWrite(dao,(val & mask));
digitalWrite(clk, HIGH);
value <<= 1;
if (digitalRead(dai) != 0) value += 1;
digitalWrite(clk, LOW);
}
digitalWrite(dao, LOW);
// Serial.print(" # ");
// Serial.println(value, HEX);
return value;
}
void MS5611_SPI::initConstants(uint8_t mathMode)
{
// constants that were multiplied in read() - datasheet page 8
// do this once and you save CPU cycles
//
// datasheet ms5611 | appNote
// mode = 0; | mode = 1
C[0] = 1;
C[1] = 32768L; // SENSt1 = C[1] * 2^15 | * 2^16
C[2] = 65536L; // OFFt1 = C[2] * 2^16 | * 2^17
C[3] = 3.90625E-3; // TCS = C[3] / 2^8 | / 2^7
C[4] = 7.8125E-3; // TCO = C[4] / 2^7 | / 2^6
C[5] = 256; // Tref = C[5] * 2^8 | * 2^8
C[6] = 1.1920928955E-7; // TEMPSENS = C[6] / 2^23 | / 2^23
if (mathMode == 1) // Appnote version for pressure.
{
C[1] = 65536L; // SENSt1
C[2] = 131072L; // OFFt1
C[3] = 7.8125E-3; // TCS
C[4] = 1.5625e-2; // TCO
}
}
// -- END OF FILE --