GY-63_MS5611/libraries/DHTNEW/dhtnew.cpp
2023-10-25 18:01:26 +02:00

428 lines
9.3 KiB
C++

//
// FILE: dhtnew.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.4.19
// PURPOSE: DHT Temperature & Humidity Sensor library for Arduino
// URL: https://github.com/RobTillaart/DHTNEW
//
// HISTORY: see changelog.md
#include "dhtnew.h"
#include <stdint.h>
// these defines are not for user to adjust (microseconds)
#define DHTLIB_DHT11_WAKEUP (18 * 1100UL)
#define DHTLIB_DHT_WAKEUP (1 * 1100UL)
// experimental 0.4.14
#define DHTLIB_SI7021_WAKEUP (500)
// READ_DELAY for blocking read
// datasheet: DHT11 = 1000 and DHT22 = 2000
// use setReadDelay() to overrule (at own risk)
// as individual sensors can be read faster.
// see example DHTnew_setReadDelay.ino
#define DHTLIB_DHT11_READ_DELAY 1000
#define DHTLIB_DHT22_READ_DELAY 2000
/////////////////////////////////////////////////////
//
// PUBLIC
//
DHTNEW::DHTNEW(uint8_t pin)
{
_dataPin = pin;
reset();
};
void DHTNEW::reset()
{
// Data-bus's free status is high voltage level.
pinMode(_dataPin, OUTPUT);
digitalWrite(_dataPin, HIGH);
_wakeupDelay = 0;
_type = 0;
_humOffset = (float)0.0;
_tempOffset = (float)0.0;
_humidity = (float)0.0;
_temperature = (float)0.0;
_lastRead = 0;
_disableIRQ = true;
_waitForRead = false;
_suppressError = false;
_readDelay = 0;
#if defined(__AVR__)
_disableIRQ = false;
#endif
// #if defined(ARDUINO_SAMD_MKRWIFI1010) // fix for issue #67
// _disableIRQ = false;
// #endif
}
uint8_t DHTNEW::getType()
{
if (_type == 0) read();
return _type;
}
void DHTNEW::setType(uint8_t type)
{
if ((type == 0) || (type == 11))
{
_type = type;
_wakeupDelay = DHTLIB_DHT11_WAKEUP;
}
if ((type == 22) || (type == 23))
{
_type = type;
_wakeupDelay = DHTLIB_DHT_WAKEUP;
}
// experimental 0.4.14
if (type == 70)
{
_type = type;
_wakeupDelay = DHTLIB_SI7021_WAKEUP;
}
}
// return values:
// DHTLIB_OK
// DHTLIB_WAITING_FOR_READ
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_BIT_SHIFT
// DHTLIB_ERROR_SENSOR_NOT_READY
// DHTLIB_ERROR_TIMEOUT_A
// DHTLIB_ERROR_TIMEOUT_B
// DHTLIB_ERROR_TIMEOUT_C
// DHTLIB_ERROR_TIMEOUT_D
int DHTNEW::read()
{
if (_readDelay == 0)
{
_readDelay = DHTLIB_DHT22_READ_DELAY;
if (_type == 11) _readDelay = DHTLIB_DHT11_READ_DELAY;
}
if (_type != 0)
{
while (millis() - _lastRead < _readDelay)
{
if (!_waitForRead) return DHTLIB_WAITING_FOR_READ;
yield();
}
return _read();
}
// AUTODETECT
// make sure sensor had time to wake up.
while (millis() < 1000);
// NOTE: cannot differentiate between type 23 and 22
_type = 22;
_wakeupDelay = DHTLIB_DHT_WAKEUP;
int rv = _read();
if (rv == DHTLIB_OK) return rv;
_type = 11;
_wakeupDelay = DHTLIB_DHT11_WAKEUP;
rv = _read();
if (rv == DHTLIB_OK) return rv;
// experimental 0.4.14
_type = 70;
_wakeupDelay = DHTLIB_SI7021_WAKEUP;
rv = _read();
if (rv == DHTLIB_OK) return rv;
_type = 0; // retry next time
return rv;
}
// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_BIT_SHIFT
// DHTLIB_ERROR_SENSOR_NOT_READY
// DHTLIB_ERROR_TIMEOUT_A
// DHTLIB_ERROR_TIMEOUT_B
// DHTLIB_ERROR_TIMEOUT_C
// DHTLIB_ERROR_TIMEOUT_D
int DHTNEW::_read()
{
// READ VALUES
int rv = _readSensor();
// enable interrupts again
#if defined(ESP32)
portENABLE_INTERRUPTS();
#else
interrupts();
#endif
// Data-bus's free status is high voltage level.
pinMode(_dataPin, OUTPUT);
digitalWrite(_dataPin, HIGH);
_lastRead = millis();
if (rv != DHTLIB_OK)
{
if (_suppressError == false)
{
_humidity = DHTLIB_INVALID_VALUE;
_temperature = DHTLIB_INVALID_VALUE;
}
return rv; // propagate error value
}
if (_type == 11) // DHT11, DH12, compatible
{
_humidity = _bits[0] + _bits[1] * 0.1;
_temperature = _bits[2] + _bits[3] * 0.1;
}
else // DHT22, DHT33, DHT44, compatible + Si7021
{
_humidity = (_bits[0] * 256 + _bits[1]) * 0.1;
int16_t t = ((_bits[2] & 0x7F) * 256 + _bits[3]);
if (t == 0)
{
_temperature = (float)0.0; // prevent -0.0;
}
else
{
_temperature = t * 0.1;
if((_bits[2] & 0x80) == 0x80 )
{
_temperature = -_temperature;
}
}
}
// HEXDUMP DEBUG
/*
Serial.println();
// CHECKSUM
if (_bits[4] < 0x10) Serial.print(0);
Serial.print(_bits[4], HEX);
Serial.print(" ");
// TEMPERATURE
if (_bits[2] < 0x10) Serial.print(0);
Serial.print(_bits[2], HEX);
if (_bits[3] < 0x10) Serial.print(0);
Serial.print(_bits[3], HEX);
Serial.print(" ");
Serial.print(_temperature, 1);
Serial.print(" ");
// HUMIDITY
if (_bits[0] < 0x10) Serial.print(0);
Serial.print(_bits[0], HEX);
if (_bits[1] < 0x10) Serial.print(0);
Serial.print(_bits[1], HEX);
Serial.print(" ");
Serial.print(_humidity, 1);
*/
// TEST OUT OF RANGE
#ifdef DHTLIB_VALUE_OUT_OF_RANGE
if (_humidity > 100)
{
return DHTLIB_HUMIDITY_OUT_OF_RANGE;
}
if ((_temperature < -40) || (_temperature > 80))
{
return DHTLIB_TEMPERATURE_OUT_OF_RANGE;
}
#endif
if (_humOffset != (float)0.0)
{
_humidity += _humOffset;
if (_humidity < 0) _humidity = 0;
if (_humidity > 100) _humidity = 100;
}
if (_tempOffset != (float)0.0)
{
_temperature += _tempOffset;
}
// TEST CHECKSUM
uint8_t sum = _bits[0] + _bits[1] + _bits[2] + _bits[3];
if (_bits[4] != sum)
{
return DHTLIB_ERROR_CHECKSUM;
}
return DHTLIB_OK;
}
void DHTNEW::powerUp()
{
digitalWrite(_dataPin, HIGH);
// do a dummy read to sync the sensor
read();
};
void DHTNEW::powerDown()
{
digitalWrite(_dataPin, LOW);
}
/////////////////////////////////////////////////////
//
// PRIVATE
//
// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_BIT_SHIFT
// DHTLIB_ERROR_SENSOR_NOT_READY
// DHTLIB_ERROR_TIMEOUT_A
// DHTLIB_ERROR_TIMEOUT_B
// DHTLIB_ERROR_TIMEOUT_C
// DHTLIB_ERROR_TIMEOUT_D
int DHTNEW::_readSensor()
{
// INIT BUFFERVAR TO RECEIVE DATA
uint8_t mask = 0x80;
uint8_t idx = 0;
// EMPTY BUFFER
for (uint8_t i = 0; i < 5; i++) _bits[i] = 0;
// REQUEST SAMPLE - SEND WAKEUP TO SENSOR
pinMode(_dataPin, OUTPUT);
digitalWrite(_dataPin, LOW);
// HANDLE SI7021 separately (see #79)
if (_type == 70)
{
delayMicroseconds(DHTLIB_SI7021_WAKEUP); // hardcoded for now
}
else
{
// WAKE UP - add 10% extra for timing inaccuracies in sensor.
uint32_t startWakeup = micros();
do
{
// HANDLE PENDING IRQ
yield();
// 180 gives good wakeup delay on UNO for DHT22 / DHT11 (issue #72)
delayMicroseconds(180UL);
}
while((micros() - startWakeup) < _wakeupDelay);
}
// HOST GIVES CONTROL TO SENSOR
digitalWrite(_dataPin, HIGH);
delayMicroseconds(2);
pinMode(_dataPin, INPUT_PULLUP);
// DISABLE INTERRUPTS when clock in the bits
if (_disableIRQ)
{
#if defined(ESP32)
portDISABLE_INTERRUPTS();
#else
noInterrupts();
#endif
}
// DHT22 (and others including Si7021)
// SENSOR PULLS LOW after 20-40 us => if stays HIGH ==> device not ready
// timeout is 20 us less due to delay() above
// DHT11
// SENSOR PULLS LOW after 6000-10000 us
uint32_t WAITFORSENSOR = 50;
if (_type == 11) WAITFORSENSOR = 15000UL;
if (_waitFor(LOW, WAITFORSENSOR)) return DHTLIB_ERROR_SENSOR_NOT_READY;
// SENSOR STAYS LOW for ~80 us => or TIMEOUT
if (_waitFor(HIGH, 90)) return DHTLIB_ERROR_TIMEOUT_A;
// SENSOR STAYS HIGH for ~80 us => or TIMEOUT
if (_waitFor(LOW, 90)) return DHTLIB_ERROR_TIMEOUT_B;
// SENSOR HAS NOW SEND ACKNOWLEDGE ON WAKEUP
// NOW IT SENDS THE BITS
// READ THE OUTPUT - 40 BITS => 5 BYTES
for (uint8_t i = 40; i != 0; i--)
{
// EACH BIT START WITH ~50 us LOW
if (_waitFor(HIGH, 90))
{
// Most critical timeout
// Serial.print("IC: ");
// Serial.println(i);
return DHTLIB_ERROR_TIMEOUT_C;
}
// DURATION OF HIGH DETERMINES 0 or 1
// 26-28 us ==> 0
// 70 us ==> 1
uint32_t t = micros();
if (_waitFor(LOW, 90))
{
// Serial.print("ID: ");
// Serial.println(i);
return DHTLIB_ERROR_TIMEOUT_D;
}
if ((micros() - t) > DHTLIB_BIT_THRESHOLD)
{
_bits[idx] |= mask;
}
// PREPARE FOR NEXT BIT
mask >>= 1;
if (mask == 0) // next byte?
{
mask = 0x80;
idx++;
}
}
// After 40 bits the sensor pulls the line LOW for 50 us
// No functional need to wait for this one
// if (_waitFor(HIGH, 60)) return DHTLIB_ERROR_TIMEOUT_E;
// CATCH RIGHTSHIFT BUG ESP (only 1 single bit shift)
// humidity is maximum 1000 = 0x03E8 for DHT22 and 0x6400 for DHT11
// so most significant bit may never be set.
if (_bits[0] & 0x80) return DHTLIB_ERROR_BIT_SHIFT;
return DHTLIB_OK;
}
// returns true if timeout has passed.
// returns false if timeout is not reached and state is seen.
bool DHTNEW::_waitFor(uint8_t state, uint32_t timeout)
{
uint32_t start = micros();
uint8_t count = 2;
while ((micros() - start) < timeout)
{
// d elayMicroseconds(1); // less # reads ==> minimizes # glitch reads
if (digitalRead(_dataPin) == state)
{
count--;
if (count == 0) return false; // requested state seen count times
}
}
return true;
}
// -- END OF FILE --