GY-63_MS5611/libraries/DHT20/DHT20.cpp
2022-12-21 21:48:21 +01:00

342 lines
5.8 KiB
C++

//
// FILE: DHT20.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.2.1
// PURPOSE: Arduino library for DHT20 I2C temperature and humidity sensor.
#include "DHT20.h"
// set DHT20_WIRE_TIME_OUT to 0 to disable.
// note this timeout is commented in code below.
#define DHT20_WIRE_TIME_OUT 250000 // microseconds
const uint8_t DHT20_ADDRESS = 0x38;
DHT20::DHT20(TwoWire *wire)
{
_wire = wire;
// reset() ?
_temperature = 0;
_humidity = 0;
_humOffset = 0;
_tempOffset = 0;
_status = 0;
_lastRequest = 0;
_lastRead = 0;
}
bool DHT20::begin()
{
_wire->begin();
// _wire->setWireTimeout(DHT20_WIRE_TIME_OUT, true);
return isConnected();
}
#if defined(ESP8266) || defined(ESP32)
bool DHT20::begin(const uint8_t dataPin, const uint8_t clockPin)
{
if ((dataPin < 255) && (clockPin < 255))
{
_wire->begin(dataPin, clockPin);
} else {
_wire->begin();
}
// _wire->setWireTimeout(DHT20_WIRE_TIME_OUT, true);
return isConnected();
}
#endif
bool DHT20::isConnected()
{
_wire->beginTransmission(DHT20_ADDRESS);
int rv = _wire->endTransmission();
return rv == 0;
}
uint8_t DHT20::getAddress()
{
return DHT20_ADDRESS;
}
// See datasheet 7.4 Sensor Reading Process, point 1
// use with care.
uint8_t DHT20::resetSensor()
{
uint8_t count = 255;
if ((readStatus() & 0x18) != 0x18)
{
count++;
if (_resetRegister(0x1B)) count++;
if (_resetRegister(0x1C)) count++;
if (_resetRegister(0x1E)) count++;
delay(10);
}
return count;
}
////////////////////////////////////////////////
//
// READ THE SENSOR
//
int DHT20::read()
{
// do not read to fast
if (millis() - _lastRead < 1000)
{
return DHT20_ERROR_LASTREAD;
}
int status = requestData();
if (status < 0) return status;
// wait for measurement ready
while (isMeasuring())
{
yield();
}
// read the measurement
status = readData();
if (status < 0) return status;
// convert it to meaningful data
return convert();
}
int DHT20::requestData()
{
// reset sensor if needed.
resetSensor();
// GET CONNECTION
_wire->beginTransmission(DHT20_ADDRESS);
_wire->write(0xAC);
_wire->write(0x33);
_wire->write(0x00);
int rv = _wire->endTransmission();
_lastRequest = millis();
return rv;
}
int DHT20::readData()
{
// GET DATA
const uint8_t length = 7;
int bytes = _wire->requestFrom(DHT20_ADDRESS, length);
if (bytes == 0) return DHT20_ERROR_CONNECT;
if (bytes < length) return DHT20_MISSING_BYTES;
bool allZero = true;
for (int i = 0; i < bytes; i++)
{
_bits[i] = _wire->read();
// if (_bits[i] < 0x10) Serial.print(0);
// Serial.print(_bits[i], HEX);
// Serial.print(" ");
allZero = allZero && (_bits[i] == 0);
}
// Serial.println();
if (allZero) return DHT20_ERROR_BYTES_ALL_ZERO;
_lastRead = millis();
return bytes;
}
int DHT20::convert()
{
// CONVERT AND STORE
_status = _bits[0];
uint32_t raw = _bits[1];
raw <<= 8;
raw += _bits[2];
raw <<= 4;
raw += (_bits[3] >> 4);
_humidity = raw * 9.5367431640625e-5; // ==> / 1048576.0 * 100%;
raw = (_bits[3] & 0x0F);
raw <<= 8;
raw += _bits[4];
raw <<= 8;
raw += _bits[5];
_temperature = raw * 1.9073486328125e-4 - 50; // ==> / 1048576.0 * 200 - 50;
// TEST CHECKSUM
uint8_t _crc = _crc8(_bits, 6);
// Serial.print(_crc, HEX);
// Serial.print("\t");
// Serial.println(_bits[6], HEX);
if (_crc != _bits[6]) return DHT20_ERROR_CHECKSUM;
return DHT20_OK;
}
////////////////////////////////////////////////
//
// TEMPERATURE & HUMIDITY & OFFSET
//
float DHT20::getHumidity()
{
return _humidity + _humOffset;
};
float DHT20::getTemperature()
{
return _temperature + _tempOffset;
};
void DHT20::setHumOffset(float offset)
{
_humOffset = offset;
};
void DHT20::setTempOffset(float offset)
{
_tempOffset = offset;
};
float DHT20::getHumOffset()
{
return _humOffset;
};
float DHT20::getTempOffset()
{
return _tempOffset;
};
////////////////////////////////////////////////
//
// STATUS
//
uint8_t DHT20::readStatus()
{
_wire->requestFrom(DHT20_ADDRESS, (uint8_t)1);
delay(1); // needed to stabilize timing
return (uint8_t) _wire->read();
}
bool DHT20::isCalibrated()
{
return (readStatus() & 0x08) == 0x08;
}
bool DHT20::isMeasuring()
{
return (readStatus() & 0x80) == 0x80;
}
bool DHT20::isIdle()
{
return (readStatus() & 0x80) == 0x00;
}
int DHT20::internalStatus()
{
return _status;
};
////////////////////////////////////////////////
//
// TIMING
//
uint32_t DHT20::lastRead()
{
return _lastRead;
};
uint32_t DHT20::lastRequest()
{
return _lastRequest;
};
////////////////////////////////////////////////
//
// PRIVATE
//
uint8_t DHT20::_crc8(uint8_t *ptr, uint8_t len)
{
uint8_t crc = 0xFF;
while(len--)
{
crc ^= *ptr++;
for (uint8_t i = 0; i < 8; i++)
{
if (crc & 0x80)
{
crc <<= 1;
crc ^= 0x31;
}
else
{
crc <<= 1;
}
}
}
return crc;
}
// Code based on demo code sent by www.aosong.com
// no further documentation.
// 0x1B returned 18, 0, 4
// 0x1C returned 18, 65, 0
// 0x1E returned 18, 8, 0
// 18 seems to be status register
// other values unknown.
bool DHT20::_resetRegister(uint8_t reg)
{
uint8_t value[3];
_wire->beginTransmission(DHT20_ADDRESS);
_wire->write(reg);
_wire->write(0x00);
_wire->write(0x00);
if (_wire->endTransmission() != 0) return false;
delay(5);
int bytes = _wire->requestFrom(DHT20_ADDRESS, (uint8_t)3);
for (int i = 0; i < bytes; i++)
{
value[i] = _wire->read();
// Serial.println(value[i], HEX);
}
delay(10);
_wire->beginTransmission(DHT20_ADDRESS);
_wire->write(0xB0 | reg);
_wire->write(value[1]);
_wire->write(value[2]);
if (_wire->endTransmission() != 0) return false;
delay(5);
return true;
}
// -- END OF FILE --