GY-63_MS5611/libraries/WaterMix/WaterMix.h
2023-11-23 14:25:18 +01:00

171 lines
3.5 KiB
C++

#pragma once
//
// FILE: WaterMix.h
// AUTHOR: Rob Tillaart
// PURPOSE: Arduino library for mixing water with different temperatures.
// VERSION: 0.1.3
// URL: https://github.com/RobTillaart/WaterMix
#include "Arduino.h"
#define WATERMIX_LIB_VERSION (F("0.1.3"))
////////////////////////////////////////////
//
// LIQUIDMIX
//
class LiquidMix
{
public:
LiquidMix()
{
_volume = 0;
_temperature = 0;
}
void begin(float volume = 0, float temperature = 0)
{
_volume = volume;
_temperature = temperature;
}
void add(float volume, float temperature)
{
if (volume <= 0) return; // false ?
float vol = _volume + volume;
_temperature = (_volume * _temperature + volume * temperature) / vol;
_volume = vol;
}
void add(LiquidMix &lm)
{
add(lm.volume(), lm.temperature());
}
void sub(float volume)
{
_volume -= volume;
if (_volume <= 0) _volume = 0;
// temperature does not change.
}
void div(float nr)
{
_volume /= nr;
// temperature does not change.
}
void mul(float nr)
{
_volume *= nr;
// temperature does not change.
}
float volume()
{
return _volume;
}
float temperature()
{
return _temperature;
}
protected:
float _volume;
float _temperature;
};
////////////////////////////////////////////
//
// WATERMIX
//
class WaterMix : public LiquidMix
{
public:
WaterMix() : LiquidMix()
{
}
void add(float volume, float temperature)
{
LiquidMix::add(volume, temperature);
}
void addExact(float volume, float temperature)
{
if (volume <= 0) return; // false
float mass0 = _volume * density(_temperature);
float mass1 = volume * density(temperature);
float totalMass = mass0 + mass1;
_temperature = (mass0 * _temperature + mass1 * temperature) / totalMass;
_volume = totalMass / density(_temperature);
}
void add(WaterMix &wm)
{
LiquidMix::add(wm.volume(), wm.temperature());
}
void addExact(WaterMix &wm)
{
addExact(wm.volume(), wm.temperature());
}
float mass()
{
return _volume * density(_temperature);
}
float volume2mass(float volume, float temperature)
{
return volume * density(temperature);
}
float mass2volume(float mass, float temperature)
{
return mass / density(temperature);
}
// density is in fact multiMap code
float density(float temperature)
{
// strip table size?
uint8_t size = 22;
uint8_t _in[] = { 0, 1, 4, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100};
float _out[] = {
0.9998495, 0.9999017, 0.9999749, 0.9997000, 0.9991026,
0.9982067, 0.9970470, 0.9956488, 0.9940326, 0.9922152,
0.9902100, 0.9880400, 0.9856900, 0.9832000, 0.9805500,
0.9777600, 0.9748400, 0.9717900, 0.9686100, 0.9653100,
0.9618900, 0.9583500
};
// take care the temperature is within range
// temperature = constrain(temperature, _in[0], _in[size-1]);
if (temperature <= _in[0]) return _out[0];
if (temperature >= _in[size-1]) return _out[size-1];
// search right interval
uint8_t pos = 1; // _in[0] already tested
while(temperature > _in[pos]) pos++;
// this will handle all exact "points" in the _in array
if (temperature == _in[pos]) return _out[pos];
// interpolate in the right segment for the rest
uint8_t pos1 = pos - 1;
return (temperature - _in[pos1]) * (_out[pos] - _out[pos1]) / (_in[pos] - _in[pos1]) + _out[pos1];
}
};
// -- END OF FILE --