GY-63_MS5611/libraries/I2C_24LC1025/I2C_24LC1025.cpp
2023-11-24 15:08:56 +01:00

456 lines
10 KiB
C++

//
// FILE: I2C_24LC1025.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.3.0
// PURPOSE: I2C_24LC1025 library for Arduino with EEPROM I2C_24LC1025 et al.
// URL: https://github.com/RobTillaart/I2C_24LC1025
#include "I2C_24LC1025.h"
// I2C buffer needs max 2 bytes for EEPROM address
// 1 byte for EEPROM register address is available in transmit buffer
#if defined(ESP32) || defined(ESP8266) || defined(PICO_RP2040)
#define I2C_BUFFERSIZE 128
#else
#define I2C_BUFFERSIZE 30 // AVR, STM
#endif
////////////////////////////////////////////////////////////////////
//
// PUBLIC FUNCTIONS
//
I2C_24LC1025::I2C_24LC1025(uint8_t deviceAddress, TwoWire * wire)
{
_deviceAddress = deviceAddress;
_deviceSize = I2C_DEVICESIZE_24LC1025;
_pageSize = I2C_PAGESIZE_24LC1025;
_wire = wire;
}
bool I2C_24LC1025::begin(int8_t writeProtectPin)
{
_lastWrite = 0;
_writeProtectPin = writeProtectPin;
if (_writeProtectPin >= 0)
{
pinMode(_writeProtectPin, OUTPUT);
preventWrite();
}
return isConnected();
}
bool I2C_24LC1025::isConnected()
{
_wire->beginTransmission(_deviceAddress);
return (_wire->endTransmission() == 0);
}
uint8_t I2C_24LC1025::getAddress()
{
return _deviceAddress;
}
/////////////////////////////////////////////////////////////
//
// WRITE SECTION
//
// returns I2C status, 0 = OK
int I2C_24LC1025::writeByte(const uint32_t memoryAddress, const uint8_t data)
{
int rv = _WriteBlock(memoryAddress, &data, 1);
return rv;
}
// returns I2C status, 0 = OK
int I2C_24LC1025::setBlock(const uint32_t memoryAddress, const uint8_t data, const uint32_t length)
{
uint8_t buffer[I2C_BUFFERSIZE];
for (uint8_t i = 0; i < I2C_BUFFERSIZE; i++)
{
buffer[i] = data;
}
int rv = _pageBlock(memoryAddress, buffer, length, false);
return rv;
}
// returns I2C status, 0 = OK
int I2C_24LC1025::writeBlock(const uint32_t memoryAddress, const uint8_t * buffer, const uint32_t length)
{
int rv = _pageBlock(memoryAddress, buffer, length, true);
return rv;
}
/////////////////////////////////////////////////////////////
//
// READ SECTION
//
// returns the value stored in memoryAddress
uint8_t I2C_24LC1025::readByte(const uint32_t memoryAddress)
{
uint8_t rdata;
_ReadBlock(memoryAddress, &rdata, 1);
return rdata;
}
// returns bytes read.
uint32_t I2C_24LC1025::readBlock(const uint32_t memoryAddress, uint8_t * buffer, const uint32_t length)
{
uint32_t addr = memoryAddress;
uint32_t len = length;
uint32_t rv = 0;
if ((addr < 0x10000) && ((addr + len) > 0x10000))
{
uint32_t sublen = 0x10000 - addr;
rv = readBlock(addr, (uint8_t *) buffer, sublen);
rv += readBlock(0x10000, (uint8_t *) &buffer[sublen], len - sublen);
return rv;
}
while (len > 0)
{
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
rv += _ReadBlock(addr, buffer, cnt);
addr += cnt;
buffer += cnt;
len -= cnt;
}
return rv;
}
/////////////////////////////////////////////////////////////
//
// UPDATE SECTION
//
// returns 0 == OK
int I2C_24LC1025::updateByte(const uint32_t memoryAddress, const uint8_t data)
{
if (data == readByte(memoryAddress)) return 0;
return writeByte(memoryAddress, data);
}
// returns bytes written.
uint32_t I2C_24LC1025::updateBlock(const uint32_t memoryAddress, const uint8_t * buffer, const uint32_t length)
{
uint32_t addr = memoryAddress;
uint32_t len = length;
uint32_t rv = 0;
while (len > 0)
{
uint8_t buf[I2C_BUFFERSIZE];
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
rv += _ReadBlock(addr, buf, cnt);
if (memcmp(buffer, buf, cnt) != 0)
{
_pageBlock(addr, buffer, cnt, true);
}
addr += cnt;
buffer += cnt;
len -= cnt;
}
return rv;
}
/////////////////////////////////////////////////////////////
//
// VERIFY SECTION
//
// return false if write or verify failed.
bool I2C_24LC1025::writeByteVerify(const uint32_t memoryAddress, const uint8_t value)
{
if (writeByte(memoryAddress, value) != 0 ) return false;
uint8_t data = readByte(memoryAddress);
return (data == value);
}
// return false if write or verify failed.
bool I2C_24LC1025::writeBlockVerify(const uint32_t memoryAddress, const uint8_t * buffer, const uint32_t length)
{
if (writeBlock(memoryAddress, buffer, length) != 0) return false;
uint8_t data[length];
if (readBlock(memoryAddress, data, length) != length) return false;
return memcmp(data, buffer, length) == 0;
}
// return false if write or verify failed.
bool I2C_24LC1025::setBlockVerify(const uint32_t memoryAddress, const uint8_t value, const uint32_t length)
{
if (setBlock(memoryAddress, value, length) != 0) return false;
uint8_t data[length];
if (readBlock(memoryAddress, data, length) != length) return false;
for (uint32_t i = 0; i < length; i++)
{
if (data[i] != value) return false;
}
return true;
}
// return false if write or verify failed.
bool I2C_24LC1025::updateByteVerify(const uint32_t memoryAddress, const uint8_t value)
{
if (updateByte(memoryAddress, value) != 0 ) return false;
uint8_t data = readByte(memoryAddress);
return (data == value);
}
// return false if write or verify failed.
bool I2C_24LC1025::updateBlockVerify(const uint32_t memoryAddress, const uint8_t * buffer, const uint32_t length)
{
if (updateBlock(memoryAddress, buffer, length) != length) return false;
uint8_t data[length];
if (readBlock(memoryAddress, data, length) != length) return false;
return memcmp(data, buffer, length) == 0;
}
/////////////////////////////////////////////////////////////
//
// METADATA SECTION
//
uint32_t I2C_24LC1025::getDeviceSize()
{
return _deviceSize;
}
uint8_t I2C_24LC1025::getPageSize()
{
return _pageSize;
}
uint32_t I2C_24LC1025::getLastWrite()
{
return _lastWrite;
}
void I2C_24LC1025::setExtraWriteCycleTime(uint8_t ms)
{
_extraTWR = ms;
}
uint8_t I2C_24LC1025::getExtraWriteCycleTime()
{
return _extraTWR;
}
//
// WRITEPROTECT
//
bool I2C_24LC1025::hasWriteProtectPin()
{
return (_writeProtectPin >= 0);
}
void I2C_24LC1025::allowWrite()
{
if (hasWriteProtectPin())
{
digitalWrite(_writeProtectPin, LOW);
}
}
void I2C_24LC1025::preventWrite()
{
if (hasWriteProtectPin())
{
digitalWrite(_writeProtectPin, HIGH);
}
}
void I2C_24LC1025::setAutoWriteProtect(bool b)
{
if (hasWriteProtectPin())
{
_autoWriteProtect = b;
}
}
bool I2C_24LC1025::getAutoWriteProtect()
{
return _autoWriteProtect;
}
////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
// _pageBlock aligns buffer to page boundaries for writing.
// and to I2C buffer size
// returns 0 = OK otherwise error
int I2C_24LC1025::_pageBlock(uint32_t memoryAddress, const uint8_t * buffer, const uint16_t length, const bool incrBuffer)
{
uint32_t addr = memoryAddress;
uint16_t len = length;
while (len > 0)
{
uint8_t bytesUntilPageBoundary = this->_pageSize - addr % this->_pageSize;
uint8_t cnt = I2C_BUFFERSIZE;
if (cnt > len) cnt = len;
if (cnt > bytesUntilPageBoundary) cnt = bytesUntilPageBoundary;
int rv = _WriteBlock(addr, buffer, cnt);
if (rv != 0) return rv;
addr += cnt;
if (incrBuffer) buffer += cnt;
len -= cnt;
}
return 0;
}
void I2C_24LC1025::_beginTransmission(uint32_t memoryAddress)
{
// chapter 5+6 - datasheet - need three bytes for address
_actualAddress = _deviceAddress;
if (memoryAddress >= 0x10000) _actualAddress |= 0x04; // addresbit 16
// Wait until EEPROM gives ACK again.
// this is a bit faster than the hardcoded 5 milliSeconds // chapter 7
// TWR = WriteCycleTime
uint32_t waitTime = I2C_WRITEDELAY + _extraTWR * 1000UL; // do the math once.
while ((micros() - _lastWrite) <= waitTime)
{
_wire->beginTransmission(_actualAddress);
if (_wire->endTransmission() == 0) break;
yield();
delayMicroseconds(50);
}
uint16_t memAddr = (memoryAddress & 0xFFFF);
_wire->beginTransmission(_actualAddress); // device address + bit 16
_wire->write((memAddr >> 8) & 0xFF); // highByte
_wire->write(memAddr & 0xFF); // lowByte
}
// pre: length <= this->_pageSize && length <= I2C_BUFFERSIZE;
// returns 0 = OK otherwise error
int I2C_24LC1025::_WriteBlock(uint32_t memoryAddress, const uint8_t * buffer, const uint8_t length)
{
_waitEEReady();
if (_autoWriteProtect)
{
digitalWrite(_writeProtectPin, LOW);
}
this->_beginTransmission(memoryAddress);
_wire->write(buffer, length);
int rv = _wire->endTransmission();
if (_autoWriteProtect)
{
digitalWrite(_writeProtectPin, HIGH);
}
_lastWrite = micros();
yield(); // For OS scheduling
// if (rv != 0)
// {
// if (_debug)
// {
// Serial.print("mem addr w: ");
// Serial.print(memoryAddress, HEX);
// Serial.print("\t");
// Serial.println(rv);
// }
// return -(abs(rv)); // error
// }
return rv;
}
// pre: buffer is large enough to hold length bytes
// returns bytes read
uint8_t I2C_24LC1025::_ReadBlock(uint32_t memoryAddress, uint8_t * buffer, const uint8_t length)
{
_waitEEReady();
// _beginTransmissinon sets actual address !!!
this->_beginTransmission(memoryAddress);
int rv = _wire->endTransmission();
if (rv != 0)
{
// if (_debug)
// {
// Serial.print("mem addr r: ");
// Serial.print(memoryAddress, HEX);
// Serial.print("\t");
// Serial.println(rv);
// }
return 0; // error
}
// readBytes will always be equal or smaller to length
uint8_t readBytes = _wire->requestFrom(_actualAddress, length);
yield(); // For OS scheduling
uint8_t cnt = 0;
while (cnt < readBytes)
{
buffer[cnt++] = _wire->read();
}
return readBytes;
}
void I2C_24LC1025::_waitEEReady()
{
// Wait until EEPROM gives ACK again.
// this is a bit faster than the hardcoded 5 milliSeconds
// TWR = WriteCycleTime
uint32_t waitTime = I2C_WRITEDELAY + _extraTWR * 1000UL;
while ((micros() - _lastWrite) <= waitTime)
{
if (isConnected()) return;
// TODO remove previous code
// _wire->beginTransmission(_deviceAddress);
// int x = _wire->endTransmission();
// if (x == 0) return;
yield(); // For OS scheduling
}
return;
}
// -- END OF FILE --