mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
429 lines
8.0 KiB
C++
429 lines
8.0 KiB
C++
//
|
|
// FILE: functionGenerator.cpp
|
|
// AUTHOR: Rob Tillaart
|
|
// VERSION: 0.2.5
|
|
// PURPOSE: wave form generating functions (use with care)
|
|
// URL: https://github.com/RobTillaart/FunctionGenerator
|
|
|
|
|
|
#include "functionGenerator.h"
|
|
|
|
|
|
funcgen::funcgen(float period, float amplitude, float phase, float yShift)
|
|
{
|
|
setPeriod(period);
|
|
setAmplitude(amplitude);
|
|
setPhase(phase);
|
|
setYShift(yShift);
|
|
setDutyCycle(50); // TODO param?
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
//
|
|
// CONFIGURATION
|
|
//
|
|
void funcgen::setPeriod(float period)
|
|
{
|
|
_period = period;
|
|
_freq1 = 1 / period;
|
|
_freq2 = 2 * _freq1;
|
|
_freq4 = 4 * _freq1;
|
|
_freq0 = TWO_PI * _freq1;
|
|
}
|
|
|
|
|
|
float funcgen::getPeriod()
|
|
{
|
|
return _period;
|
|
}
|
|
|
|
|
|
void funcgen::setFrequency(float freq)
|
|
{
|
|
setPeriod(1.0 / freq);
|
|
}
|
|
|
|
|
|
float funcgen::getFrequency()
|
|
{
|
|
return _freq1;
|
|
}
|
|
|
|
|
|
void funcgen::setAmplitude(float ampl)
|
|
{
|
|
_amplitude = ampl;
|
|
}
|
|
|
|
|
|
float funcgen::getAmplitude()
|
|
{
|
|
return _amplitude;
|
|
}
|
|
|
|
void funcgen::setPhase(float phase)
|
|
{
|
|
_phase = phase;
|
|
}
|
|
|
|
|
|
float funcgen::getPhase()
|
|
{
|
|
return _phase;
|
|
}
|
|
|
|
|
|
void funcgen::setYShift(float yShift)
|
|
{
|
|
_yShift = yShift;
|
|
}
|
|
|
|
|
|
float funcgen::getYShift()
|
|
{
|
|
return _yShift;
|
|
}
|
|
|
|
|
|
void funcgen::setDutyCycle(float dutyCycle)
|
|
{
|
|
// negative dutyCycle? => 1-dc? or abs()?
|
|
if (dutyCycle < 0) _dutyCycle = 0.0;
|
|
else if (dutyCycle > 100) _dutyCycle = 1.0;
|
|
else _dutyCycle = dutyCycle * 0.01;
|
|
}
|
|
|
|
|
|
float funcgen::getDutyCycle()
|
|
{
|
|
return _dutyCycle * 100.0;
|
|
}
|
|
|
|
|
|
void funcgen::setRandomSeed(uint32_t a, uint32_t b)
|
|
{
|
|
// prevent zero loops in random() function.
|
|
if (a == 0) a = 123;
|
|
if (b == 0) b = 456;
|
|
_m_w = a;
|
|
_m_z = b;
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
//
|
|
// FUNCTIONS
|
|
//
|
|
float funcgen::line()
|
|
{
|
|
return _yShift + _amplitude;
|
|
}
|
|
|
|
|
|
float funcgen::zero()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
float funcgen::sawtooth(float t, uint8_t mode)
|
|
{
|
|
float rv;
|
|
t += _phase;
|
|
if (t >= 0.0)
|
|
{
|
|
t = fmod(t, _period);
|
|
if (mode == 1) t = _period - t;
|
|
rv = _amplitude * (-1.0 + t *_freq2);
|
|
}
|
|
else
|
|
{
|
|
t = -t;
|
|
t = fmod(t, _period);
|
|
if (mode == 1) t = _period - t;
|
|
rv = _amplitude * ( 1.0 - t * _freq2);
|
|
}
|
|
rv += _yShift;
|
|
return rv;
|
|
}
|
|
|
|
|
|
float funcgen::triangle(float t)
|
|
{
|
|
float rv;
|
|
t += _phase;
|
|
if (t < 0.0)
|
|
{
|
|
t = -t;
|
|
}
|
|
t = fmod(t, _period);
|
|
if (t < (_period * _dutyCycle))
|
|
{
|
|
rv = _amplitude * (-1.0 + t * _freq2 / _dutyCycle);
|
|
}
|
|
else
|
|
{
|
|
// mirror math
|
|
t = _period - t;
|
|
rv = _amplitude * (-1.0 + t * _freq2 /(1 - _dutyCycle));
|
|
}
|
|
rv += _yShift;
|
|
return rv;
|
|
}
|
|
|
|
|
|
float funcgen::square(float t)
|
|
{
|
|
float rv;
|
|
t += _phase;
|
|
if (t >= 0)
|
|
{
|
|
t = fmod(t, _period);
|
|
if (t < (_period * _dutyCycle)) rv = _amplitude;
|
|
else rv = -_amplitude;
|
|
}
|
|
else
|
|
{
|
|
t = -t;
|
|
t = fmod(t, _period);
|
|
if (t < (_period * _dutyCycle)) rv = -_amplitude;
|
|
else rv = _amplitude;
|
|
}
|
|
rv += _yShift;
|
|
return rv;
|
|
}
|
|
|
|
|
|
float funcgen::sinus(float t)
|
|
{
|
|
float rv;
|
|
t += _phase;
|
|
rv = _amplitude * sin(t * _freq0);
|
|
rv += _yShift;
|
|
return rv;
|
|
}
|
|
|
|
|
|
float funcgen::stair(float t, uint16_t steps, uint8_t mode)
|
|
{
|
|
t += _phase;
|
|
if (t >= 0)
|
|
{
|
|
t = fmod(t, _period);
|
|
if (mode == 1) t = _period - t;
|
|
int level = steps * t / _period;
|
|
return _yShift + _amplitude * (-1.0 + 2.0 * level / (steps - 1));
|
|
}
|
|
t = -t;
|
|
t = fmod(t, _period);
|
|
if (mode == 1) t = _period - t;
|
|
int level = steps * t / _period;
|
|
return _yShift + _amplitude * (1.0 - 2.0 * level / (steps - 1));
|
|
}
|
|
|
|
|
|
float funcgen::random()
|
|
{
|
|
float rv = _yShift + _amplitude * _random() * 0.2328306436E-9; // div 0xFFFFFFFF
|
|
return rv;
|
|
}
|
|
|
|
|
|
// duty cycle variant takes more than twice as much time.
|
|
float funcgen::random_DC()
|
|
{
|
|
static float rv = 0;
|
|
float next = _yShift + _amplitude * _random() * 0.2328306436E-9; // div 0xFFFFFFFF
|
|
rv += (next - rv) * _dutyCycle;
|
|
return rv;
|
|
}
|
|
|
|
|
|
|
|
// An example of a simple pseudo-random number generator is the
|
|
// Multiply-with-carry method invented by George Marsaglia.
|
|
// two initializers (not null)
|
|
uint32_t funcgen::_random()
|
|
{
|
|
_m_z = 36969L * (_m_z & 65535L) + (_m_z >> 16);
|
|
_m_w = 18000L * (_m_w & 65535L) + (_m_w >> 16);
|
|
return (_m_z << 16) + _m_w; /* 32-bit result */
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
//
|
|
// INTEGER VERSIONS FOR 8 BIT DAC
|
|
//
|
|
// 8 bits version
|
|
// t = 0..9999 period 10000 in millis, returns 0..255
|
|
|
|
/*
|
|
|
|
uint8_t ifgsaw(uint16_t t, uint16_t period = 1000)
|
|
{
|
|
return 255L * t / period;
|
|
}
|
|
|
|
|
|
uint8_t ifgtri(uint16_t t, uint16_t period = 1000)
|
|
{
|
|
if (t * 2 < period) return 510L * t / period;
|
|
return 255L - 510L * t / period;
|
|
}
|
|
|
|
|
|
uint8_t ifgsqr(uint16_t t, uint16_t period = 1000)
|
|
{
|
|
if (t * 2 < period) return 510L * t / period;
|
|
return 255L - 510L * t / period;
|
|
}
|
|
|
|
|
|
uint8_t ifgsin(uint16_t t, uint16_t period = 1000)
|
|
{
|
|
return sin(355L * t / period / 113); // LUT
|
|
}
|
|
|
|
|
|
uint8_t ifgstr(uint16_t t, uint16_t period = 1000, uint16_t steps = 8)
|
|
{
|
|
int level = 1L * steps * t / period;
|
|
return 255L * level / (steps - 1);
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
//
|
|
// SIMPLE float ONES
|
|
//
|
|
// t = 0..period
|
|
// period = 0.001 ... 10000 ?
|
|
|
|
/*
|
|
float fgsaw(float t, float period = 1.0)
|
|
{
|
|
if (t >= 0) return -1.0 + 2 * t / period;
|
|
return 1.0 + 2 * t / period;
|
|
}
|
|
|
|
|
|
float fgtri(float t, float period = 1.0)
|
|
{
|
|
if (t < 0) t = -t;
|
|
if (t * 2 < period) return -1.0 + 4 * t / period;
|
|
return 3.0 - 4 * t / period;
|
|
}
|
|
|
|
|
|
float fgsqr(float t, float period = 1.0)
|
|
{
|
|
if (t >= 0)
|
|
{
|
|
if ( 2 * t < period) return 1.0;
|
|
return -1.0;
|
|
}
|
|
t = -t;
|
|
if (2 * t < period) return -1.0;
|
|
return 1.0;
|
|
}
|
|
|
|
|
|
float fgsin(float t, float period = 1.0)
|
|
{
|
|
return sin(TWO_PI * t / period);
|
|
}
|
|
|
|
|
|
float fgstr(float t, float period = 1.0, uint16_t steps = 8)
|
|
{
|
|
if (t >= 0)
|
|
{
|
|
int level = steps * t / period;
|
|
return -1.0 + 2.0 * level / (steps - 1);
|
|
}
|
|
t = -t;
|
|
int level = steps * t / period;
|
|
return 1.0 - 2.0 * level / (steps - 1);
|
|
}
|
|
*/
|
|
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
//
|
|
// FULL floatS ONES
|
|
//
|
|
float fgsaw(float t, float period = 1.0, float amplitude = 1.0, float phase = 0.0, float yShift = 0.0)
|
|
{
|
|
t += phase;
|
|
if (t >= 0)
|
|
{
|
|
if (t >= period) t = fmod(t, period);
|
|
return yShift + amplitude * (-1.0 + 2 * t / period);
|
|
}
|
|
t = -t;
|
|
if (t >= period) t = fmod(t, period);
|
|
return yShift + amplitude * ( 1.0 - 2 * t / period);
|
|
}
|
|
|
|
|
|
float fgtri(float t, float period = 1.0, float amplitude = 1.0, float phase = 0.0, float yShift = 0.0, float dutyCycle = 0.50)
|
|
{
|
|
t += phase;
|
|
if (t < 0) t = -t;
|
|
if (t >= period) t = fmod(t, period);
|
|
// 50 % dutyCycle = faster
|
|
// if (t * 2 < period) return yShift + amplitude * (-1.0 + 4 * t / period);
|
|
// return yShift + amplitude * (3.0 - 4 * t / period);
|
|
if (t < dutyCycle * period) return yShift + amplitude * (-1.0 + 2 * t / (dutyCycle * period));
|
|
// return yShift + amplitude * (-1.0 + 2 / (1 - dutyCycle) - 2 * t / ((1 - dutyCycle) * period));
|
|
return yShift + amplitude * (-1.0 + 2 / (1 - dutyCycle) * ( 1 - t / period));
|
|
}
|
|
|
|
|
|
float fgsqr(float t, float period = 1.0, float amplitude = 1.0, float phase = 0.0, float yShift = 0.0, float dutyCycle = 0.50)
|
|
{
|
|
t += phase;
|
|
if (t >= 0)
|
|
{
|
|
if (t >= period) t = fmod(t, period);
|
|
if (t < dutyCycle * period) return yShift + amplitude;
|
|
return yShift - amplitude;
|
|
}
|
|
t = -t;
|
|
if (t >= period) t = fmod(t, period);
|
|
if (t < dutyCycle * period) return yShift - amplitude;
|
|
return yShift + amplitude;
|
|
}
|
|
|
|
|
|
float fgsin(float t, float period = 1.0, float amplitude = 1.0, float phase = 0.0, float yShift = 0.0)
|
|
{
|
|
t += phase;
|
|
float rv = yShift + amplitude * sin(TWO_PI * t / period);
|
|
return rv;
|
|
}
|
|
|
|
|
|
float fgstr(float t, float period = 1.0, float amplitude = 1.0, float phase = 0.0, float yShift = 0.0, uint16_t steps = 8)
|
|
{
|
|
t += phase;
|
|
if (t >= 0)
|
|
{
|
|
if (t >= period) t = fmod(t, period);
|
|
int level = steps * t / period;
|
|
return yShift + amplitude * (-1.0 + 2.0 * level / (steps - 1));
|
|
}
|
|
t = -t;
|
|
if (t >= period) t = fmod(t, period);
|
|
int level = steps * t / period;
|
|
return yShift + amplitude * (1.0 - 2.0 * level / (steps - 1));
|
|
}
|
|
|
|
|
|
// -- END OF FILE --
|
|
|