2023-01-18 19:45:11 +01:00

396 lines
7.7 KiB
C++

//
// FILE: AD56X8.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.1.3
// DATE: 2022-07-28
// PURPOSE: Arduino library for AD56X8, SPI 8 channel Digital Analog Convertor.
#include "AD56X8.h"
// not all "commands" implemented yet
#define AD56X8_REG_WRITE 0x00
#define AD56X8_REG_UPDATE 0x01
#define AD56X8_REG_WRITE_LDAC 0x02
#define AD56X8_REG_WRITE_UPDATE 0x03
#define AD56X8_REG_POWER 0x04
#define AD56X8_REG_LOAD_CLR 0x05
#define AD56X8_REG_LOAD_LDAC 0x06
#define AD56X8_REG_RESET 0x07
#define AD56X8_REG_SETUP_REF 0x08 // not implemented
AD56X8::AD56X8(uint8_t slaveSelect)
{
_hwSPI = true;
_select = slaveSelect;
for (int i = 0; i < 8; i++) _value[i] = 0;
}
AD56X8::AD56X8(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect)
{
_hwSPI = false;
_dataOut = spiData;
_clock = spiClock;
_select = slaveSelect;
for (int i = 0; i < 8; i++) _value[i] = 0;
}
// initializes the SPI
// and sets internal state
void AD56X8::begin()
{
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE1);
if(_hwSPI)
{
#if defined(ESP32)
if (_useHSPI) // HSPI
{
mySPI = new SPIClass(HSPI);
mySPI->end();
mySPI->begin(14, 12, 13, _select); // CLK=14 MISO=12 MOSI=13
}
else // VSPI
{
mySPI = new SPIClass(VSPI);
mySPI->end();
mySPI->begin(18, 19, 23, _select); // CLK=18 MISO=19 MOSI=23
}
#else // generic hardware SPI
mySPI = &SPI;
mySPI->end();
mySPI->begin();
#endif
delay(1);
}
else // software SPI
{
pinMode(_dataOut, OUTPUT);
pinMode(_clock, OUTPUT);
digitalWrite(_dataOut, LOW);
digitalWrite(_clock, LOW);
}
// TODO RESET REGISTERS
// _register = 0;
// _value = 0;
}
uint8_t AD56X8::getType()
{
return _type;
}
// value = 0..65535 (16 bit), 16383 (14 bit), 4095 (12 bit) depending on type)
bool AD56X8::setValue(uint8_t channel, uint16_t value)
{
if (channel > 7) return false;
if ((_type == 12) && (value > 4095)) return false;
if ((_type == 14) && (value > 16383)) return false;
_value[channel] = value;
updateDevice(AD56X8_REG_WRITE_UPDATE, channel, value);
return true;
}
// returns 0..65535 (16 bit), 16383 (14 bit), 4095 (12 bit) depending on type)
uint16_t AD56X8::getValue(uint8_t channel)
{
if (channel > 7) return 0;
return _value[channel];
}
bool AD56X8::setPercentage(uint8_t channel, float percentage)
{
uint16_t value = 0;
if ((percentage < 0) || (percentage > 100)) return false;
if (_type == 16) value = round(655.35 * percentage);
else if (_type == 14) value = round(163.83 * percentage);
else /* type = 12 */ value = round( 40.95 * percentage);
return setValue(channel, value);
}
float AD56X8::getPercentage(uint8_t channel)
{
float value = getValue(channel);
if (value > 0)
{
if (_type == 16) return value * ( 1.0 / 655.35);
if (_type == 14) return value * ( 1.0 / 163.83);
if (_type == 12) return value * ( 1.0 / 40.95);
}
return 0;
}
bool AD56X8::prepareChannel(uint8_t channel, uint16_t value)
{
if (channel > 7) return false;
if ((_type == 12) && (value > 4095)) return false;
if ((_type == 14) && (value > 16383)) return false;
_value[channel] = value;
updateDevice(AD56X8_REG_WRITE, channel, value);
return true;
}
bool AD56X8::updateChannel(uint8_t channel)
{
if (channel > 7) return false;
updateDevice(AD56X8_REG_UPDATE, channel, 0);
return true;
}
void AD56X8::updateAllChannels()
{
updateDevice(AD56X8_REG_WRITE_LDAC, 0, _value[0]);
}
void AD56X8::setLDACmask(uint8_t mask)
{
_ldacMask = mask;
updateDevice(AD56X8_REG_LOAD_LDAC, 0, 0, _ldacMask);
}
uint8_t AD56X8::getLDACmask()
{
return _ldacMask;
}
bool AD56X8::inLDACmask(uint8_t channel)
{
if (channel > 7) return false;
return (_ldacMask & (1 << channel)) > 0;
}
bool AD56X8::setPowerMode(uint8_t powerDownMode, uint8_t channelMask)
{
if (powerDownMode > 3) return false;
updateDevice(AD56X8_REG_POWER, 0, 0, channelMask);
return true;
}
void AD56X8::reset()
{
updateDevice(AD56X8_REG_RESET, 0, 0, 0);
// reset the internal values.
for (int i = 0; i < 8; i++) _value[i] = 0;
}
bool AD56X8::setClearCode(uint8_t CCmode)
{
if (CCmode > 3) return false;
updateDevice(AD56X8_REG_LOAD_CLR, 0, 0, CCmode);
return true;
}
//
// SPI
//
void AD56X8::setSPIspeed(uint32_t speed)
{
_SPIspeed = speed;
_spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE1);
};
uint32_t AD56X8::getSPIspeed()
{
return _SPIspeed;
};
bool AD56X8::usesHWSPI()
{
return _hwSPI;
}
// ESP32 specific
#if defined(ESP32)
void AD56X8::selectHSPI()
{
_useHSPI = true;
}
void AD56X8::selectVSPI()
{
_useHSPI = false;
}
bool AD56X8::usesHSPI()
{
return _useHSPI;
}
bool AD56X8::usesVSPI()
{
return !_useHSPI;
}
void AD56X8::setGPIOpins(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t select)
{
_clock = clk;
_dataOut = mosi;
_select = select;
pinMode(_select, OUTPUT);
digitalWrite(_select, HIGH);
mySPI->end(); // disable SPI
mySPI->begin(clk, miso, mosi, select); // enable SPI
}
#endif
//////////////////////////////////////////////////////////////////
//
// PRIVATE
//
void AD56X8::updateDevice(uint8_t cmd, uint8_t channel, uint16_t value)
{
uint16_t val = value;
if (_type == 12) val <<= 4;
if (_type == 14) val <<= 2;
uint8_t a = cmd;
uint8_t b = (channel << 4) | (val >> 12);
uint8_t c = val >> 4;
uint8_t d = val << 4;
updateDevice(a, b, c, d);
}
void AD56X8::updateDevice(uint8_t a, uint8_t b, uint8_t c, uint8_t d)
{
digitalWrite(_select, LOW);
if (_hwSPI)
{
mySPI->beginTransaction(_spi_settings);
mySPI->transfer(a);
mySPI->transfer(b);
mySPI->transfer(c);
mySPI->transfer(d);
mySPI->endTransaction();
}
else // Software SPI
{
swSPI_transfer(a);
swSPI_transfer(b);
swSPI_transfer(c);
swSPI_transfer(d);
}
digitalWrite(_select, HIGH);
}
// simple one mode version
void AD56X8::swSPI_transfer(uint8_t value)
{
uint8_t clk = _clock;
uint8_t dao = _dataOut;
for (uint8_t mask = 0x80; mask; mask >>= 1)
{
digitalWrite(dao,(value & mask));
digitalWrite(clk, HIGH);
digitalWrite(clk, LOW);
}
}
/////////////////////////////////////////////////////////////////////////////
//
// DERIVED
//
AD5668_3::AD5668_3(uint8_t slaveSelect) : AD56X8(slaveSelect)
{
_type = 16;
// AD5668_3 starts up at midscale
for (int i = 0; i < 8; i++) _value[i] = 32768; // MIDSCALE
}
AD5668_3::AD5668_3(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect)
: AD56X8(spiData, spiClock, slaveSelect)
{
_type = 16;
// AD5668_3 starts up at midscale
for (int i = 0; i < 8; i++) _value[i] = 32768; // MIDSCALE
}
void AD5668_3::reset()
{
updateDevice(AD56X8_REG_RESET, 0, 0, 0);
// reset the internal values.
for (int i = 0; i < 8; i++) _value[i] = 32768; // MIDSCALE
}
AD5668::AD5668(uint8_t slaveSelect) : AD56X8(slaveSelect)
{
_type = 16;
}
AD5668::AD5668(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect)
: AD56X8(spiData, spiClock, slaveSelect)
{
_type = 16;
}
AD5648::AD5648(uint8_t slaveSelect) : AD56X8(slaveSelect)
{
_type = 14;
}
AD5648::AD5648(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect)
: AD56X8(spiData, spiClock, slaveSelect)
{
_type = 14;
}
AD5628::AD5628(uint8_t slaveSelect) : AD56X8(slaveSelect)
{
_type = 12;
}
AD5628::AD5628(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect)
: AD56X8(spiData, spiClock, slaveSelect)
{
_type = 12;
}
// -- END OF FILE --