GY-63_MS5611/libraries/RunningAverage/RunningAverage.cpp
2021-05-26 16:39:03 +02:00

223 lines
5.7 KiB
C++

//
// FILE: RunningAverage.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.4.0
// DATE: 2015-July-10
// PURPOSE: Arduino library to calculate the running average by means of a circular buffer
// URL: https://github.com/RobTillaart/RunningAverage
//
// The library stores N individual values in a circular buffer,
// to calculate the running average.
//
// HISTORY:
// 0.1.00 2011-01-30 initial version
// 0.1.01 2011-02-28 fixed missing destructor in .h
// 0.2.00 2012-??-?? Yuval Naveh added trimValue (found on web)
// http://stromputer.googlecode.com/svn-history/r74/trunk/Arduino/Libraries/RunningAverage/RunningAverage.cpp
// 0.2.01 2012-11-21 refactored
// 0.2.02 2012-12-30 refactored trimValue -> fillValue
// 0.2.03 2013-11-31 getElement
// 0.2.04 2014-07-03 added memory protection
// 0.2.05 2014-12-16 changed float -> double
// 0.2.06 2015-03-07 all size uint8_t
// 0.2.07 2015-03-16 added getMin() and getMax() functions (Eric Mulder)
// 0.2.08 2015-04-10 refactored getMin() and getMax() implementation
// 0.2.09 2015-07-12 refactor const + constructor
// 0.2.10 2015-09-01 added getFastAverage() and refactored getAverage()
// http://forum.arduino.cc/index.php?topic=50473
// 0.2.11 2015-09-04 added getMaxInBuffer() getMinInBuffer() request (Antoon)
// 0.2.12 2016-12-01 added GetStandardDeviation() GetStandardError() BufferIsFull() (V0v1kkk)
// 0.2.13 2017-07-26 revert double to float - issue #33;
// refactored a bit; marked some TODO's; all function names to camelCase
// 0.2.14 2020-01-15 added getValue(n) to retrieve elements in order of addition - see issue #132
// 0.2.15 2020-01-17 fix overflow in getValue - see issue #139
// 0.2.16 2020-04-16 improve _sum - see issue #149 (bourkemcrobbo)
// 0.3.0 2020-04-16 main refactor
// 0.3.1 2020-06-19 fix library.json; minor refactor
// 0.3.2 2021-01-15 add add() + license + refactor
// 0.4.0 2021-05-18 increase size above 256 elements (16 bit version)
#include "RunningAverage.h"
RunningAverage::RunningAverage(const uint16_t size)
{
_size = size;
_partial = _size;
_array = (float*) malloc(_size * sizeof(float));
if (_array == NULL) _size = 0;
clear();
}
RunningAverage::~RunningAverage()
{
if (_array != NULL) free(_array);
}
// resets all counters
void RunningAverage::clear()
{
_count = 0;
_index = 0;
_sum = 0.0;
_min = NAN;
_max = NAN;
for (uint16_t i = _size; i > 0; )
{
_array[--i] = 0.0; // keeps addValue simpler
}
}
// adds a new value to the data-set
void RunningAverage::addValue(const float value)
{
if (_array == NULL) return; // allocation error
_sum -= _array[_index];
_array[_index] = value;
_sum += _array[_index];
_index++;
if (_index == _partial) _index = 0; // faster than %
// handle min max
if (_count == 0) _min = _max = value;
else if (value < _min) _min = value;
else if (value > _max) _max = value;
// update count as last otherwise if ( _count == 0) above will fail
if (_count < _partial) _count++;
}
// returns the average of the data-set added sofar
float RunningAverage::getAverage()
{
if (_count == 0) return NAN;
_sum = 0;
for (uint16_t i = 0; i < _count; i++)
{
_sum += _array[i];
}
return _sum / _count; // multiplication is faster ==> extra admin
}
// the larger the size of the internal buffer the greater the gain wrt getAverage()
float RunningAverage::getFastAverage() const
{
if (_count == 0) return NAN;
return _sum / _count; // multiplication is faster ==> extra admin
}
// returns the minimum value in the buffer
float RunningAverage::getMinInBuffer() const
{
if (_count == 0) return NAN;
float min = _array[0];
for (uint16_t i = 1; i < _count; i++)
{
if (_array[i] < min) min = _array[i];
}
return min;
}
// returns the maximum value in the buffer
float RunningAverage::getMaxInBuffer() const
{
if (_count == 0) return NAN;
float max = _array[0];
for (uint16_t i = 1; i < _count; i++)
{
if (_array[i] > max) max = _array[i];
}
return max;
}
// returns the value of an element if exist, NAN otherwise
float RunningAverage::getElement(uint16_t index) const
{
if (index >=_count ) return NAN;
return _array[index];
}
// Return standard deviation of running average. If buffer is empty, return NAN.
float RunningAverage::getStandardDeviation() const
{
if (_count <= 1) return NAN;
float temp = 0;
float average = getFastAverage();
for (uint16_t i = 0; i < _count; i++)
{
temp += pow((_array[i] - average), 2);
}
temp = sqrt(temp/(_count - 1));
return temp;
}
// Return standard error of running average. If buffer is empty, return NAN.
float RunningAverage::getStandardError() const //++
{
float temp = getStandardDeviation();
if (temp == NAN) return NAN;
if (_count <= 1) return NAN;
float n;
if (_count >= 30) n = _count;
else n = _count - 1;
temp = temp/sqrt(n);
return temp;
}
// fill the average with the same value number times. (weight)
// This is maximized to size times. no need to fill the internal buffer over 100%
void RunningAverage::fillValue(const float value, const uint16_t number)
{
clear();
uint16_t s = number;
if (s > _size) s = _size;
for (uint16_t i = s; i > 0; i--)
{
addValue(value);
}
}
float RunningAverage::getValue(const uint16_t index)
{
if (_count == 0) return NAN;
if (index >= _count) return NAN; // cannot ask more than is added
uint16_t pos = index + _index;
if (pos >= _count) pos -= _count;
return _array[pos];
}
void RunningAverage::setPartial(const uint16_t part)
{
_partial = part;
if ((_partial == 0) || (_partial > _size)) _partial = _size;
clear();
}
// -- END OF FILE --