GY-63_MS5611/libraries/M62429/M62429.cpp
2023-11-08 19:04:11 +01:00

265 lines
5.8 KiB
C++

//
// FILE: M62429.cpp
// AUTHOR: Rob Tillaart
// PURPOSE: Arduino library for M62429 volume control IC
// VERSION: 0.3.7
// HISTORY: See M62429.cpp2
// URL: https://github.com/RobTillaart/M62429
#include "M62429.h"
#define M62429_MAX_ATTN 87 // decibel
M62429::M62429()
{
_vol[0] = 0;
_vol[1] = 0;
_muted = false;
}
void M62429::begin(uint8_t dataPin, uint8_t clockPin)
{
_data = dataPin;
_clock = clockPin;
pinMode(_data, OUTPUT);
pinMode(_clock, OUTPUT);
digitalWrite(_data, LOW);
digitalWrite(_clock, LOW);
_muted = false;
setVolume(2, 0);
}
int M62429::getVolume(uint8_t channel)
{
if (channel > 2) return M62429_CHANNEL_ERROR;
return _vol[channel & 1];
}
int M62429::setVolume(uint8_t channel, uint8_t volume)
{
if (channel > 2) return M62429_CHANNEL_ERROR;
if (_muted) return M62429_MUTED;
uint16_t attn = (M62429_MAX_ATTN * volume)/255;
_setAttn(channel, attn);
// update cached values
if (channel == 0) _vol[0] = volume;
else if (channel == 1) _vol[1] = volume;
else _vol[0] = _vol[1] = volume;
return M62429_OK;
}
int M62429::incr(uint8_t channel)
{
if (channel > 2) return M62429_CHANNEL_ERROR;
if (_muted) return M62429_MUTED;
if ( ((channel == 0) || (channel == 2)) && (_vol[0] < 255))
{
_vol[0]++;
setVolume(0, _vol[0]);
}
if ( ((channel == 1) || (channel == 2)) && (_vol[1] < 255))
{
_vol[1]++;
setVolume(1, _vol[1]);
}
return M62429_OK;
}
int M62429::decr(uint8_t channel)
{
if (channel > 2) return M62429_CHANNEL_ERROR;
if (_muted) return M62429_MUTED;
if ( ((channel == 0) || (channel == 2)) && (_vol[0] > 0))
{
_vol[0]--;
setVolume(0, _vol[0]);
}
if ( ((channel == 1) || (channel == 2)) && (_vol[1] > 0))
{
_vol[1]--;
setVolume(1, _vol[1]);
}
return M62429_OK;
}
int M62429::average()
{
if (_muted) return M62429_MUTED;
uint8_t v = (((int)_vol[0]) + _vol[1]) / 2;
setVolume(2, v);
return M62429_OK;
}
void M62429::muteOn()
{
if (_muted) return;
_muted = true;
// if ((_vol[0] > 0) || (_vol[1] > 0)) _setAttn(2, 0);
_setAttn(2, 0); // mute must work unconditional.
}
void M62429::muteOff()
{
if (_muted == false) return;
_muted = false;
if (_vol[0] > 0) setVolume(0, _vol[0]);
if (_vol[1] > 0) setVolume(1, _vol[1]);
}
bool M62429::isMuted()
{
return _muted;
}
////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
// attn = 0..M62429_MAX_ATTN
void M62429::_setAttn(uint8_t channel, uint8_t attn)
{
uint16_t databits = 0x0200; // D9 latch bit
databits |= ((attn & 0x03) << 7); // D8 - D7
databits |= (attn & 0x7C); // D6 - D2
// channel == 2 -> both 0x00 is default
if (channel == 0) databits |= 0x03; // D0 - D1
if (channel == 1) databits |= 0x02; // D0 - D1
// write D0 - D9
for (uint8_t i = 0; i < 10; i++)
{
digitalWrite(_data, databits & 0x01);
databits >>= 1;
digitalWrite(_clock, HIGH);
// Note if _clock pulses are long enough, _data pulses are too.
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
digitalWrite(_data, LOW);
digitalWrite(_clock, LOW);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
}
// Send D10 HIGH bit (Latch signal)
digitalWrite(_data, HIGH);
digitalWrite(_clock, HIGH);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
// latch D10 signal requires _clock low before _data
// make _data dummy write to keep timing constant
digitalWrite(_data, HIGH);
digitalWrite(_clock, LOW);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
digitalWrite(_data, LOW);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
}
/////////////////////////////////////////////////////////////////////////////
//
// M62429_RAW
//
void M62429_RAW::begin(uint8_t dataPin, uint8_t clockPin)
{
_data = dataPin;
_clock = clockPin;
pinMode(_data, OUTPUT);
pinMode(_clock, OUTPUT);
digitalWrite(_data, LOW);
digitalWrite(_clock, LOW);
setAttn(2, 0);
}
int M62429_RAW::getAttn(uint8_t channel)
{
return _attn[channel & 1];
}
void M62429_RAW::setAttn(uint8_t channel, uint8_t attn)
{
uint16_t databits = 0x0200; // D9 latch bit
databits |= ((attn & 0x03) << 7); // D8 - D7
databits |= (attn & 0x7C); // D6 - D2
// channel == 2 -> both 0x00 is default
if (channel == 0) databits |= 0x03; // D0 - D1
if (channel == 1) databits |= 0x02; // D0 - D1
// write D0 - D9
for (uint8_t i = 0; i < 10; i++)
{
digitalWrite(_data, databits & 0x01);
databits >>= 1;
digitalWrite(_clock, HIGH);
// Note if _clock pulses are long enough, _data pulses are too.
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
digitalWrite(_data, LOW);
digitalWrite(_clock, LOW);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
}
// Send D10 HIGH bit (Latch signal)
digitalWrite(_data, HIGH);
digitalWrite(_clock, HIGH);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
// latch D10 signal requires _clock low before _data
// make _data dummy write to keep timing constant
digitalWrite(_data, HIGH);
digitalWrite(_clock, LOW);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
digitalWrite(_data, LOW);
#if M62429_CLOCK_DELAY > 0
delayMicroseconds(M62429_CLOCK_DELAY);
#endif
// update cached values
if (channel == 0) _attn[0] = attn;
else if (channel == 1) _attn[1] = attn;
else _attn[0] = _attn[1] = attn;
}
// -- END OF FILE --