GY-63_MS5611/libraries/MAX31855_RT/MAX31855.h
2024-06-03 15:06:32 +02:00

143 lines
3.9 KiB
C++

#pragma once
//
// FILE: MAX31855.h
// AUTHOR: Rob Tillaart
// VERSION: 0.6.1
// PURPOSE: Arduino library for MAX31855 chip for K type thermocouple
// DATE: 2014-01-01
// URL: https://github.com/RobTillaart/MAX31855_RT
// http://forum.arduino.cc/index.php?topic=208061
// Breakout board
//
// +---------+
// Vin | o |
// 3V3 | o |
// GND | o O | Thermocouple
// D0 | o O | Thermocouple
// CS | o |
// CLK | o |
// +---------+
#include "Arduino.h"
#include "SPI.h"
#define MAX31855_VERSION (F("0.6.1"))
#ifndef __SPI_CLASS__
// MBED must be tested before RP2040
#if defined(ARDUINO_ARCH_MBED)
#define __SPI_CLASS__ SPIClass
#elif defined(ARDUINO_ARCH_RP2040)
#define __SPI_CLASS__ SPIClassRP2040
#else
#define __SPI_CLASS__ SPIClass
#endif
#endif
#define MAX31855_NO_TEMPERATURE -999
// STATE constants returned by read()
#define STATUS_OK 0x00
#define STATUS_OPEN_CIRCUIT 0x01
#define STATUS_SHORT_TO_GND 0x02
#define STATUS_SHORT_TO_VCC 0x04
#define STATUS_ERROR 0x07
#define STATUS_NOREAD 0x80
#define STATUS_NO_COMMUNICATION 0x81
// Thermocouples working is based upon Seebeck effect.
// Different TC have a different Seebeck Coefficient (µV/°C)
// See http://www.analog.com/library/analogDialogue/archives/44-10/thermocouple.html
//
// As the MAX31855 is designed for K type sensors, one can calculate
// the factor needed to convert other sensors measurements.
// NOTE: this is only a linear approximation.
//
// Seebeck Coefficients (sensitivity) from the MAX31855 datasheet page 8
// to be used in setSeebeckCoefficient()
//
// TYPE COEFFICIENT
#define E_TC 76.373
#define J_TC 57.953
#define K_TC 41.276
#define N_TC 36.256
#define R_TC 10.506
#define S_TC 9.587
#define T_TC 52.18
class MAX31855
{
public:
// HW SPI
MAX31855(uint8_t select, __SPI_CLASS__ * mySPI);
// SW SPI
MAX31855(uint8_t select, uint8_t miso, uint8_t clock);
void begin();
// returns state - bit field: 0 = STATUS_OK
uint8_t read();
float getInternal(void) const { return _internal; }
float getTemperature(void);
uint8_t getStatus(void) const { return _status; };
inline bool openCircuit() { return _status == STATUS_OPEN_CIRCUIT; };
inline bool shortToGND() { return _status == STATUS_SHORT_TO_GND; };
inline bool shortToVCC() { return _status == STATUS_SHORT_TO_VCC; };
inline bool genericError() { return _status == STATUS_ERROR; };
inline bool noRead() { return _status == STATUS_NOREAD; };
inline bool noCommunication() { return _status == STATUS_NO_COMMUNICATION; };
// use offset to calibrate the TC.
void setOffset(const float t) { _offset = t; };
float getOffset() const { return _offset; };
// set the above E_TC or other Seebeck Coefficients
// one can also set your own optimized values.
void setSeebeckCoefficient(const float SC) { _SeebeckC = SC; };
float getSeebeckCoefficient() const { return _SeebeckC; };
uint32_t lastRead() { return _lastTimeRead; };
uint32_t getRawData() { return _rawData;};
// speed in Hz
void setSPIspeed(uint32_t speed);
uint32_t getSPIspeed() { return _SPIspeed; };
void setSWSPIdelay(uint16_t del = 0) { _swSPIdelay = del; };
uint16_t getSWSPIdelay() { return _swSPIdelay; };
private:
uint32_t _read();
uint8_t _status;
float _internal;
float _temperature;
float _offset;
float _SeebeckC;
uint32_t _lastTimeRead;
uint32_t _rawData;
bool _hwSPI;
uint8_t _clock;
uint8_t _miso;
uint8_t _select;
uint16_t _swSPIdelay = 0;
uint32_t _SPIspeed;
__SPI_CLASS__ * _mySPI;
SPISettings _spi_settings;
};
// -- END OF FILE --