GY-63_MS5611/libraries/A1301/A1301.cpp
2024-04-19 19:37:04 +02:00

268 lines
3.9 KiB
C++

//
// FILE: A1301.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.2.3
// DATE: 2010-07-22
// PURPOSE: Arduino library for A1301 A1302 magnetometer.
// URL: https://github.com/RobTillaart/A1301
#include "A1301.h"
/////////////////////////////////////////////////////////////////////////////
//
// CONSTRUCTOR
//
HALL::HALL(uint8_t pin)
{
_pin = pin;
_maxADC = 1023;
_mVStep = 5000.0 / _maxADC; // default 10 bit 5V ADC (UNO)
_midPoint = _maxADC * 0.5; // default middle
_prevGauss = 0;
_lastGauss = 0;
_GaussmV = 1.0 / 2.5;
_maxGauss = 500.0;
}
void HALL::begin(float voltage, uint16_t steps)
{
_maxADC = steps;
_mVStep = voltage / steps;
_midPoint = steps * 0.5;
}
/////////////////////////////////////////////////////////////////////////////
//
// MIDPOINT
//
void HALL::setMidPoint(float midPoint)
{
_midPoint = midPoint;
}
float HALL::autoMidPoint(uint8_t times)
{
_midPoint = raw(times);
return _midPoint;
}
float HALL::getMidPoint()
{
return _midPoint;
}
/////////////////////////////////////////////////////////////////////////////
//
// SENSITIVITY
//
void HALL::setSensitivity(float sensitivity)
{
_GaussmV = 1.0 / sensitivity;
}
float HALL::getSensitivity()
{
return 1.0 / _GaussmV;
}
/////////////////////////////////////////////////////////////////////////////
//
// READ
//
float HALL::raw(uint8_t times)
{
float sum = 0;
if (times == 0) times = 1;
for (int i = 0; i < times; i++)
{
// yield();
sum += analogRead(_pin);
}
if (times > 1) sum /= times;
return sum;
}
float HALL::read(uint8_t times)
{
float milliVolts = (raw(times) - _midPoint) * _mVStep;
_prevGauss = _lastGauss;
_lastGauss = milliVolts * _GaussmV;
return _lastGauss;
}
float HALL::determineNoise(uint8_t times)
{
uint16_t ma = 0;
uint16_t mi = 65535;
if (times < 2) times = 2;
for (uint8_t i = 0; i < times; i++)
{
uint16_t r = analogRead(_pin);
if (r < mi) mi = r;
if (r > ma) ma = r;
}
return (ma - mi) * _mVStep * _GaussmV;
}
float HALL::readExt(float raw)
{
float milliVolts = (raw - _midPoint) * _mVStep;
_prevGauss = _lastGauss;
_lastGauss = milliVolts * _GaussmV;
return _lastGauss;
}
/////////////////////////////////////////////////////////////////////////////
//
// ANALYSE
//
bool HALL::isNull()
{
return (_lastGauss == 0);
}
bool HALL::isNorth()
{
return (_lastGauss > 0);
}
bool HALL::isSouth()
{
return (_lastGauss < 0);
}
bool HALL::isRising()
{
return _lastGauss > _prevGauss;
}
bool HALL::isFalling()
{
return _lastGauss < _prevGauss;
}
float HALL::lastGauss()
{
return _lastGauss;
}
float HALL::prevGauss()
{
return _prevGauss;
}
float HALL::deltaGauss()
{
return _lastGauss - _prevGauss;
}
float HALL::angle()
{
return atan2(_prevGauss, _lastGauss);
}
/////////////////////////////////////////////////////////////////////////////
//
// CONVERTORS
//
float HALL::Tesla(float Gauss)
{
return Gauss * 0.0001;
}
float HALL::mTesla(float Gauss)
{
return Gauss * 0.1;
}
float HALL::uTesla(float Gauss)
{
return Gauss * 100;
}
/////////////////////////////////////////////////////////////////////////////
//
// SATURATION LEVEL
//
void HALL::setMaxGauss(float maxGauss)
{
_maxGauss = abs(maxGauss);
}
float HALL::getMaxGauss()
{
return _maxGauss;
}
bool HALL::isSaturated()
{
return (abs(_lastGauss) >= _maxGauss);
}
float HALL::saturationLevel()
{
return 100.0 * abs(_lastGauss / _maxGauss);
}
/////////////////////////////////////////////////////////////////////////////
//
// DERIVED CLASSES
//
A1301::A1301(uint8_t pin) : HALL(pin)
{
_GaussmV = 1.0 / 2.5;
}
A1302::A1302(uint8_t pin) : HALL(pin)
{
_GaussmV = 1.0 / 1.3;
}
A1324::A1324(uint8_t pin) : HALL(pin)
{
_GaussmV = 1.0 / 5.0;
}
A1325::A1325(uint8_t pin) : HALL(pin)
{
_GaussmV = 1.0 / 3.125;
}
A1326::A1326(uint8_t pin) : HALL(pin)
{
_GaussmV = 1.0 / 2.5;
}
// -- END OF FILE --