// // FILE: AD56X8.cpp // AUTHOR: Rob Tillaart // VERSION: 0.1.4 // DATE: 2022-07-28 // PURPOSE: Arduino library for AD56X8, SPI 8 channel Digital Analog Convertor. #include "AD56X8.h" // not all "commands" implemented yet #define AD56X8_REG_WRITE 0x00 #define AD56X8_REG_UPDATE 0x01 #define AD56X8_REG_WRITE_LDAC 0x02 #define AD56X8_REG_WRITE_UPDATE 0x03 #define AD56X8_REG_POWER 0x04 #define AD56X8_REG_LOAD_CLR 0x05 #define AD56X8_REG_LOAD_LDAC 0x06 #define AD56X8_REG_RESET 0x07 #define AD56X8_REG_SETUP_REF 0x08 // not implemented AD56X8::AD56X8(uint8_t slaveSelect) { _hwSPI = true; _select = slaveSelect; for (int i = 0; i < 8; i++) _value[i] = 0; } AD56X8::AD56X8(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) { _hwSPI = false; _dataOut = spiData; _clock = spiClock; _select = slaveSelect; for (int i = 0; i < 8; i++) _value[i] = 0; } // initializes the SPI // and sets internal state void AD56X8::begin() { pinMode(_select, OUTPUT); digitalWrite(_select, HIGH); _spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE1); if(_hwSPI) { #if defined(ESP32) if (_useHSPI) // HSPI { mySPI = new SPIClass(HSPI); mySPI->end(); mySPI->begin(14, 12, 13, _select); // CLK=14 MISO=12 MOSI=13 } else // VSPI { mySPI = new SPIClass(VSPI); mySPI->end(); mySPI->begin(18, 19, 23, _select); // CLK=18 MISO=19 MOSI=23 } #else // generic hardware SPI mySPI = &SPI; mySPI->end(); mySPI->begin(); #endif delay(1); } else // software SPI { pinMode(_dataOut, OUTPUT); pinMode(_clock, OUTPUT); digitalWrite(_dataOut, LOW); digitalWrite(_clock, LOW); } // TODO RESET REGISTERS // _register = 0; // _value = 0; } uint8_t AD56X8::getType() { return _type; } void AD56X8::setLDACPin(uint8_t ldac) { _ldac = ldac; pinMode(_ldac, OUTPUT); digitalWrite(_ldac, HIGH); } bool AD56X8::triggerLDAC() { if (_ldac == 255) return false; digitalWrite(_ldac, LOW); digitalWrite(_ldac, HIGH); return true; } // value = 0..65535 (16 bit), 16383 (14 bit), 4095 (12 bit) depending on type) bool AD56X8::setValue(uint8_t channel, uint16_t value) { if (channel > 7) return false; if ((_type == 12) && (value > 4095)) return false; if ((_type == 14) && (value > 16383)) return false; _value[channel] = value; updateDevice(AD56X8_REG_WRITE_UPDATE, channel, value); return true; } // returns 0..65535 (16 bit), 16383 (14 bit), 4095 (12 bit) depending on type) uint16_t AD56X8::getValue(uint8_t channel) { if (channel > 7) return 0; return _value[channel]; } bool AD56X8::setPercentage(uint8_t channel, float percentage) { uint16_t value = 0; if ((percentage < 0) || (percentage > 100)) return false; if (_type == 16) value = round(655.35 * percentage); else if (_type == 14) value = round(163.83 * percentage); else /* type = 12 */ value = round( 40.95 * percentage); return setValue(channel, value); } float AD56X8::getPercentage(uint8_t channel) { float value = getValue(channel); if (value > 0) { if (_type == 16) return value * ( 1.0 / 655.35); if (_type == 14) return value * ( 1.0 / 163.83); if (_type == 12) return value * ( 1.0 / 40.95); } return 0; } bool AD56X8::prepareChannel(uint8_t channel, uint16_t value) { if (channel > 7) return false; if ((_type == 12) && (value > 4095)) return false; if ((_type == 14) && (value > 16383)) return false; _value[channel] = value; updateDevice(AD56X8_REG_WRITE, channel, value); return true; } bool AD56X8::updateChannel(uint8_t channel) { if (channel > 7) return false; updateDevice(AD56X8_REG_UPDATE, channel, 0); return true; } void AD56X8::updateAllChannels() { updateDevice(AD56X8_REG_WRITE_LDAC, 0, _value[0]); } void AD56X8::setLDACmask(uint8_t mask) { _ldacMask = mask; updateDevice(AD56X8_REG_LOAD_LDAC, 0, 0, _ldacMask); } uint8_t AD56X8::getLDACmask() { return _ldacMask; } bool AD56X8::inLDACmask(uint8_t channel) { if (channel > 7) return false; return (_ldacMask & (1 << channel)) > 0; } bool AD56X8::setPowerMode(uint8_t powerDownMode, uint8_t channelMask) { if (powerDownMode > 3) return false; updateDevice(AD56X8_REG_POWER, 0, 0, channelMask); return true; } void AD56X8::reset() { updateDevice(AD56X8_REG_RESET, 0, 0, 0); // reset the internal values. for (int i = 0; i < 8; i++) _value[i] = 0; } bool AD56X8::setClearCode(uint8_t CCmode) { if (CCmode > 3) return false; updateDevice(AD56X8_REG_LOAD_CLR, 0, 0, CCmode); return true; } // // SPI // void AD56X8::setSPIspeed(uint32_t speed) { _SPIspeed = speed; _spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE1); }; uint32_t AD56X8::getSPIspeed() { return _SPIspeed; }; bool AD56X8::usesHWSPI() { return _hwSPI; } // ESP32 specific #if defined(ESP32) void AD56X8::selectHSPI() { _useHSPI = true; } void AD56X8::selectVSPI() { _useHSPI = false; } bool AD56X8::usesHSPI() { return _useHSPI; } bool AD56X8::usesVSPI() { return !_useHSPI; } void AD56X8::setGPIOpins(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t select) { _clock = clk; _dataOut = mosi; _select = select; pinMode(_select, OUTPUT); digitalWrite(_select, HIGH); mySPI->end(); // disable SPI mySPI->begin(clk, miso, mosi, select); // enable SPI } #endif ////////////////////////////////////////////////////////////////// // // PRIVATE // void AD56X8::updateDevice(uint8_t cmd, uint8_t channel, uint16_t value) { uint16_t val = value; if (_type == 12) val <<= 4; if (_type == 14) val <<= 2; uint8_t a = cmd; uint8_t b = (channel << 4) | (val >> 12); uint8_t c = val >> 4; uint8_t d = val << 4; updateDevice(a, b, c, d); } void AD56X8::updateDevice(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { digitalWrite(_select, LOW); if (_hwSPI) { mySPI->beginTransaction(_spi_settings); mySPI->transfer(a); mySPI->transfer(b); mySPI->transfer(c); mySPI->transfer(d); mySPI->endTransaction(); } else // Software SPI { swSPI_transfer(a); swSPI_transfer(b); swSPI_transfer(c); swSPI_transfer(d); } digitalWrite(_select, HIGH); } // simple one mode version void AD56X8::swSPI_transfer(uint8_t value) { uint8_t clk = _clock; uint8_t dao = _dataOut; for (uint8_t mask = 0x80; mask; mask >>= 1) { digitalWrite(dao,(value & mask)); digitalWrite(clk, HIGH); digitalWrite(clk, LOW); } } ///////////////////////////////////////////////////////////////////////////// // // DERIVED CLASSES // AD5668_3::AD5668_3(uint8_t slaveSelect) : AD56X8(slaveSelect) { _type = 16; // AD5668_3 starts up at midscale for (int i = 0; i < 8; i++) _value[i] = 32768; // MIDSCALE } AD5668_3::AD5668_3(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD56X8(spiData, spiClock, slaveSelect) { _type = 16; // AD5668_3 starts up at midscale for (int i = 0; i < 8; i++) _value[i] = 32768; // MIDSCALE } void AD5668_3::reset() { updateDevice(AD56X8_REG_RESET, 0, 0, 0); // reset the internal values. for (int i = 0; i < 8; i++) _value[i] = 32768; // MIDSCALE } AD5668::AD5668(uint8_t slaveSelect) : AD56X8(slaveSelect) { _type = 16; } AD5668::AD5668(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD56X8(spiData, spiClock, slaveSelect) { _type = 16; } AD5648::AD5648(uint8_t slaveSelect) : AD56X8(slaveSelect) { _type = 14; } AD5648::AD5648(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD56X8(spiData, spiClock, slaveSelect) { _type = 14; } AD5628::AD5628(uint8_t slaveSelect) : AD56X8(slaveSelect) { _type = 12; } AD5628::AD5628(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD56X8(spiData, spiClock, slaveSelect) { _type = 12; } // -- END OF FILE --