[![Arduino CI](https://github.com/RobTillaart/randomHelpers/workflows/Arduino%20CI/badge.svg)](https://github.com/marketplace/actions/arduino_ci) [![Arduino-lint](https://github.com/RobTillaart/randomHelpers/actions/workflows/arduino-lint.yml/badge.svg)](https://github.com/RobTillaart/randomHelpers/actions/workflows/arduino-lint.yml) [![JSON check](https://github.com/RobTillaart/randomHelpers/actions/workflows/jsoncheck.yml/badge.svg)](https://github.com/RobTillaart/randomHelpers/actions/workflows/jsoncheck.yml) [![License: MIT](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/RobTillaart/randomHelpers/blob/master/LICENSE) [![GitHub release](https://img.shields.io/github/release/RobTillaart/randomHelpers.svg?maxAge=3600)](https://github.com/RobTillaart/randomHelpers/releases) # randomHelpers Arduino library for faster generation of random numbers. ## Description This library contains functions that have the goal to deliver random bits faster than the build in random function can, while still using it. The idea is to have a buffer ( __randomBuffer) which can hold up to 32 bits. When a number of random bits are needed, these are first fetched from the buffer and if the buffer gets empty, it is filled again with a call to the random generator. This strategy works well with a 32 bits buffer and requests for 1..16 random bits. However above 16 bits the overhead is larger than the gain. So to improve in that range too one could use a faster random function like the one from Marsaglia (included). Note the gains differ per platform and are more explicit on the (slow) Arduino UNO platform than on a much faster ESP32. This library relates to https://github.com/RobTillaart/Prandom ## Interface ```cpp #include "randomHelpers.h" ``` #### generators (sort of) - **uint32_t Marsaglia()** fast PRNG. - **bool seedMarsaglia(uint32_t a, uint32_t b)** seed the Marsaglia PRNG. a and b should not be 0. returns true on success. #### getters - **bool getRandom1()** returns 0 or 1, false or true. - **uint8_t getRandom2()** returns 0 .. 3. - **uint8_t getRandom3()** returns 0 .. 7. - **uint8_t getRandom4()** returns 0 .. 15. - **uint8_t getRandom5()** returns 0 .. 31. - **uint8_t getRandom6()** returns 0 .. 63. - **uint8_t getRandom7()** returns 0 .. 127. - **uint8_t getRandom8()** returns 0 .. 255 typically a byte. - **uint16_t getRandom16()** returns 0 .. 65535 (2 bytes). - **uint32_t getRandom24()** returns 0 .. 16777215 (3 bytes), e.g. random RGB colour. - **uint32_t getRandom32()** returns 0 .. 2^32 - 1 (4 bytes) this is the core random generator - **uint64_t getRandom64()** returns 0.. 2^64 - 1 (8 bytes). - **uint32_t getRandomBits(n)** returns 0.. 2^n - 1 This works well for 1..16 bits but above 16 it is slower than the standard way. #### Typical wrappers. - **bool flipCoin()** A wrapper around getRandom1(). - **uint8_t throwDice()** returns 1..6. The examples show how to use these and how their performance gain relative to calling **random()** for every random number. ## Performance to elaborate ## Operation See examples ## Future #### Must - improve/update documentation - add performance figures - wrap all up in a class. - rename getRandom64() ==> get64() etc. #### Should - improve performance getRandomBits(n) for n = 17..31 - how to preserve bits if idx too small. - add JKISS? other RNG's - test if the functions are uniform. #### Could - improve performance getRandomBits(n) for n = 17..31 - investigate new tricks :) - add **getRandom9() 10()** can be done 3x from 32 bits. - 11..16 => 2x from 32 bits - - add **getRandom12()** clipping get16 is equally fast. #### Wont