// // FILE: I2C_eeprom.cpp // AUTHOR: Rob Tillaart // VERSION: 1.7.4 // PURPOSE: Arduino Library for external I2C EEPROM 24LC256 et al. // URL: https://github.com/RobTillaart/I2C_EEPROM.git #include "I2C_eeprom.h" // Not used directly #define I2C_PAGESIZE_24LC512 128 #define I2C_PAGESIZE_24LC256 64 #define I2C_PAGESIZE_24LC128 64 #define I2C_PAGESIZE_24LC64 32 #define I2C_PAGESIZE_24LC32 32 #define I2C_PAGESIZE_24LC16 16 #define I2C_PAGESIZE_24LC08 16 #define I2C_PAGESIZE_24LC04 16 #define I2C_PAGESIZE_24LC02 8 #define I2C_PAGESIZE_24LC01 8 // I2C buffer needs max 2 bytes for EEPROM address // 1 byte for EEPROM register address is available in transmit buffer #if defined(ESP32) || defined(ESP8266) || defined(PICO_RP2040) #define I2C_BUFFERSIZE 128 #else #define I2C_BUFFERSIZE 30 // AVR, STM #endif //////////////////////////////////////////////////////////////////// // // PUBLIC FUNCTIONS // I2C_eeprom::I2C_eeprom(const uint8_t deviceAddress, TwoWire * wire) : I2C_eeprom(deviceAddress, I2C_PAGESIZE_24LC256, wire) { } I2C_eeprom::I2C_eeprom(const uint8_t deviceAddress, const uint32_t deviceSize, TwoWire * wire) { _deviceAddress = deviceAddress; _deviceSize = setDeviceSize(deviceSize); _pageSize = getPageSize(_deviceSize); _wire = wire; // Chips 16 Kbit (2048 Bytes) or smaller only have one-word addresses. this->_isAddressSizeTwoWords = deviceSize > I2C_DEVICESIZE_24LC16; } #if defined(ESP8266) || defined(ESP32) bool I2C_eeprom::begin(uint8_t sda, uint8_t scl, int8_t writeProtectPin) { // if (_wire == 0) Serial.println("zero"); // test #48 if ((sda < 255) && (scl < 255)) { _wire->begin(sda, scl); } else { _wire->begin(); } _lastWrite = 0; _writeProtectPin = writeProtectPin; if (_writeProtectPin >= 0) { pinMode(_writeProtectPin, OUTPUT); preventWrite(); } return isConnected(); } #elif defined(ARDUINO_ARCH_RP2040) && !defined(__MBED__) bool I2C_eeprom::begin(uint8_t sda, uint8_t scl, int8_t writeProtectPin) { if ((sda < 255) && (scl < 255)) { _wire->setSCL(scl); _wire->setSDA(sda); _wire->begin(); } _lastWrite = 0; _writeProtectPin = writeProtectPin; if (_writeProtectPin >= 0) { pinMode(_writeProtectPin, OUTPUT); preventWrite(); } return isConnected(); } #endif bool I2C_eeprom::begin(int8_t writeProtectPin) { // if (_wire == 0) Serial.println("zero"); // test #48 _wire->begin(); _lastWrite = 0; _writeProtectPin = writeProtectPin; if (_writeProtectPin >= 0) { pinMode(_writeProtectPin, OUTPUT); preventWrite(); } return isConnected(); } bool I2C_eeprom::isConnected() { _wire->beginTransmission(_deviceAddress); return (_wire->endTransmission() == 0); } ///////////////////////////////////////////////////////////// // // WRITE SECTION // // returns I2C status, 0 = OK int I2C_eeprom::writeByte(const uint16_t memoryAddress, const uint8_t data) { int rv = _WriteBlock(memoryAddress, &data, 1); return rv; } // returns I2C status, 0 = OK int I2C_eeprom::setBlock(const uint16_t memoryAddress, const uint8_t data, const uint16_t length) { uint8_t buffer[I2C_BUFFERSIZE]; for (uint8_t i = 0; i < I2C_BUFFERSIZE; i++) { buffer[i] = data; } int rv = _pageBlock(memoryAddress, buffer, length, false); return rv; } // returns I2C status, 0 = OK int I2C_eeprom::writeBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length) { int rv = _pageBlock(memoryAddress, buffer, length, true); return rv; } ///////////////////////////////////////////////////////////// // // READ SECTION // // returns the value stored in memoryAddress uint8_t I2C_eeprom::readByte(const uint16_t memoryAddress) { uint8_t rdata; _ReadBlock(memoryAddress, &rdata, 1); return rdata; } // returns bytes read. uint16_t I2C_eeprom::readBlock(const uint16_t memoryAddress, uint8_t * buffer, const uint16_t length) { uint16_t addr = memoryAddress; uint16_t len = length; uint16_t rv = 0; while (len > 0) { uint8_t cnt = I2C_BUFFERSIZE; if (cnt > len) cnt = len; rv += _ReadBlock(addr, buffer, cnt); addr += cnt; buffer += cnt; len -= cnt; } return rv; } ///////////////////////////////////////////////////////////// // // UPDATE SECTION // // returns 0 == OK int I2C_eeprom::updateByte(const uint16_t memoryAddress, const uint8_t data) { if (data == readByte(memoryAddress)) return 0; return writeByte(memoryAddress, data); } // returns bytes written. uint16_t I2C_eeprom::updateBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length) { uint16_t addr = memoryAddress; uint16_t len = length; uint16_t rv = 0; while (len > 0) { uint8_t buf[I2C_BUFFERSIZE]; uint8_t cnt = I2C_BUFFERSIZE; if (cnt > len) cnt = len; rv += _ReadBlock(addr, buf, cnt); if (memcmp(buffer, buf, cnt) != 0) { _pageBlock(addr, buffer, cnt, true); } addr += cnt; buffer += cnt; len -= cnt; } return rv; } ///////////////////////////////////////////////////////////// // // VERIFY SECTION // // return false if write or verify failed. bool I2C_eeprom::writeByteVerify(const uint16_t memoryAddress, const uint8_t value) { if (writeByte(memoryAddress, value) != 0 ) return false; uint8_t data = readByte(memoryAddress); return (data == value); } // return false if write or verify failed. bool I2C_eeprom::writeBlockVerify(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length) { if (writeBlock(memoryAddress, buffer, length) != 0) return false; uint8_t data[length]; if (readBlock(memoryAddress, data, length) != length) return false; return memcmp(data, buffer, length) == 0; } // return false if write or verify failed. bool I2C_eeprom::setBlockVerify(const uint16_t memoryAddress, const uint8_t value, const uint16_t length) { if (setBlock(memoryAddress, value, length) != 0) return false; uint8_t data[length]; if (readBlock(memoryAddress, data, length) != length) return false; for (uint16_t i = 0; i < length; i++) { if (data[i] != value) return false; } return true; } // return false if write or verify failed. bool I2C_eeprom::updateByteVerify(const uint16_t memoryAddress, const uint8_t value) { if (updateByte(memoryAddress, value) != 0 ) return false; uint8_t data = readByte(memoryAddress); return (data == value); } // return false if write or verify failed. bool I2C_eeprom::updateBlockVerify(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length) { if (updateBlock(memoryAddress, buffer, length) != length) return false; uint8_t data[length]; if (readBlock(memoryAddress, data, length) != length) return false; return memcmp(data, buffer, length) == 0; } ///////////////////////////////////////////////////////////// // // METADATA SECTION // // returns size in bytes // returns 0 if not connected // // tested for // 2 byte address // 24LC512 64 KB YES // 24LC256 32 KB YES // 24LC128 16 KB YES // 24LC64 8 KB YES // 24LC32 4 KB YES* - no hardware test, address scheme identical to 24LC64. // // 1 byte address (uses part of deviceAddress byte) // 24LC16 2 KB YES // 24LC08 1 KB YES // 24LC04 512 B YES // 24LC02 256 B YES // 24LC01 128 B YES uint32_t I2C_eeprom::determineSize(const bool debug) { // try to read a byte to see if connected if (! isConnected()) return 0; uint8_t patAA = 0xAA; uint8_t pat55 = 0x55; for (uint32_t size = 128; size <= 65536; size *= 2) { bool folded = false; // store old values bool addressSize = _isAddressSizeTwoWords; _isAddressSizeTwoWords = size > I2C_DEVICESIZE_24LC16; // 2048 uint8_t buf = readByte(size); // test folding uint8_t cnt = 0; writeByte(size, pat55); if (readByte(0) == pat55) cnt++; writeByte(size, patAA); if (readByte(0) == patAA) cnt++; folded = (cnt == 2); if (debug) { Serial.print(size, HEX); Serial.print('\t'); Serial.println(readByte(size), HEX); } // restore old values writeByte(size, buf); _isAddressSizeTwoWords = addressSize; if (folded) return size; } return 0; } uint32_t I2C_eeprom::getDeviceSize() { return _deviceSize; } uint8_t I2C_eeprom::getPageSize() { return _pageSize; } uint8_t I2C_eeprom::getPageSize(uint32_t deviceSize) { // determine page size from device size // based on Microchip 24LCXX data sheets. if (deviceSize <= I2C_DEVICESIZE_24LC02) return 8; if (deviceSize <= I2C_DEVICESIZE_24LC16) return 16; if (deviceSize <= I2C_DEVICESIZE_24LC64) return 32; if (deviceSize <= I2C_DEVICESIZE_24LC256) return 64; // I2C_DEVICESIZE_24LC512 return 128; } uint32_t I2C_eeprom::getLastWrite() { return _lastWrite; } uint32_t I2C_eeprom::setDeviceSize(uint32_t deviceSize) { uint32_t size = 128; // force power of 2. while ((size <= 65536) && ( size <= deviceSize)) { _deviceSize = size; size *= 2; } // Chips 16 Kbit (2048 Bytes) or smaller only have one-word addresses. this->_isAddressSizeTwoWords = _deviceSize > I2C_DEVICESIZE_24LC16; return _deviceSize; } uint8_t I2C_eeprom::setPageSize(uint8_t pageSize) { uint8_t size = 8; // force power of 2. while ((size <= 128) && ( size <= pageSize)) { _pageSize = size; size *= 2; } return _pageSize; } void I2C_eeprom::setExtraWriteCycleTime(uint8_t ms) { _extraTWR = ms; } uint8_t I2C_eeprom::getExtraWriteCycleTime() { return _extraTWR; } // // WRITEPROTECT // bool I2C_eeprom::hasWriteProtectPin() { return (_writeProtectPin >= 0); } void I2C_eeprom::allowWrite() { if (hasWriteProtectPin()) { digitalWrite(_writeProtectPin, LOW); } } void I2C_eeprom::preventWrite() { if (hasWriteProtectPin()) { digitalWrite(_writeProtectPin, HIGH); } } void I2C_eeprom::setAutoWriteProtect(bool b) { if (hasWriteProtectPin()) { _autoWriteProtect = b; } } bool I2C_eeprom::getAutoWriteProtect() { return _autoWriteProtect; } //////////////////////////////////////////////////////////////////// // // PRIVATE // // _pageBlock aligns buffer to page boundaries for writing. // and to I2C buffer size // returns 0 = OK otherwise error int I2C_eeprom::_pageBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint16_t length, const bool incrBuffer) { uint16_t addr = memoryAddress; uint16_t len = length; while (len > 0) { uint8_t bytesUntilPageBoundary = this->_pageSize - addr % this->_pageSize; uint8_t cnt = I2C_BUFFERSIZE; if (cnt > len) cnt = len; if (cnt > bytesUntilPageBoundary) cnt = bytesUntilPageBoundary; int rv = _WriteBlock(addr, buffer, cnt); if (rv != 0) return rv; addr += cnt; if (incrBuffer) buffer += cnt; len -= cnt; } return 0; } // supports one and two bytes addresses void I2C_eeprom::_beginTransmission(const uint16_t memoryAddress) { if (this->_isAddressSizeTwoWords) { _wire->beginTransmission(_deviceAddress); // Address High Byte _wire->write((memoryAddress >> 8)); } else { uint8_t addr = _deviceAddress | ((memoryAddress >> 8) & 0x07); _wire->beginTransmission(addr); } // Address Low Byte // (or single byte for chips 16K or smaller that have one-word addresses) _wire->write((memoryAddress & 0xFF)); } // pre: length <= this->_pageSize && length <= I2C_BUFFERSIZE; // returns 0 = OK otherwise error int I2C_eeprom::_WriteBlock(const uint16_t memoryAddress, const uint8_t * buffer, const uint8_t length) { _waitEEReady(); if (_autoWriteProtect) { digitalWrite(_writeProtectPin, LOW); } this->_beginTransmission(memoryAddress); _wire->write(buffer, length); int rv = _wire->endTransmission(); if (_autoWriteProtect) { digitalWrite(_writeProtectPin, HIGH); } _lastWrite = micros(); yield(); // For OS scheduling // if (rv != 0) // { // if (_debug) // { // Serial.print("mem addr w: "); // Serial.print(memoryAddress, HEX); // Serial.print("\t"); // Serial.println(rv); // } // return -(abs(rv)); // error // } return rv; } // pre: buffer is large enough to hold length bytes // returns bytes read uint8_t I2C_eeprom::_ReadBlock(const uint16_t memoryAddress, uint8_t * buffer, const uint8_t length) { _waitEEReady(); this->_beginTransmission(memoryAddress); int rv = _wire->endTransmission(); if (rv != 0) { // if (_debug) // { // Serial.print("mem addr r: "); // Serial.print(memoryAddress, HEX); // Serial.print("\t"); // Serial.println(rv); // } return 0; // error } // readBytes will always be equal or smaller to length uint8_t readBytes = 0; if (this->_isAddressSizeTwoWords) { readBytes = _wire->requestFrom(_deviceAddress, length); } else { uint8_t addr = _deviceAddress | ((memoryAddress >> 8) & 0x07); readBytes = _wire->requestFrom(addr, length); } yield(); // For OS scheduling uint8_t cnt = 0; while (cnt < readBytes) { buffer[cnt++] = _wire->read(); } return readBytes; } void I2C_eeprom::_waitEEReady() { // Wait until EEPROM gives ACK again. // this is a bit faster than the hardcoded 5 milliSeconds // TWR = WriteCycleTime uint32_t waitTime = I2C_WRITEDELAY + _extraTWR * 1000UL; while ((micros() - _lastWrite) <= waitTime) { if (isConnected()) return; // TODO remove pre 1.7.4 code // _wire->beginTransmission(_deviceAddress); // int x = _wire->endTransmission(); // if (x == 0) return; yield(); // For OS scheduling } return; } // -- END OF FILE --