// // FILE: MCP23S08.cpp // AUTHOR: Rob Tillaart // VERSION: 0.1.0 // PURPOSE: Arduino library for SPI MCP23S08 8 channel port expander // DATE: 2022-01-10 // URL: https://github.com/RobTillaart/MCP23S08 // // HISTORY: // 0.1.0 2022-01-10 initial version #include "Arduino.h" #include "MCP23S08.h" // Registers // description datasheet #define MCP23S08_DDR_A 0x00 // Data Direction Register A P.. #define MCP23S08_POL_A 0x01 // Input Polarity A P.. #define MCP23S08_GPINTEN_A 0x02 // NOT USED interrupt enable P.. #define MCP23S08_DEFVAL_A 0x03 // NOT USED interrupt def P.. #define MCP23S08_INTCON_A 0x04 // NOT USED interrupt control P.. #define MCP23S08_IOCR 0x05 // IO control register P.. #define MCP23S08_PUR_A 0x06 // Pull Up Resistors A P.. #define MCP23S08_INTF_A 0x07 // NOT USED interrupt flag P.. #define MCP23S08_INTCAP_A 0x08 // NOT USED interrupt capture P.. #define MCP23S08_GPIO_A 0x09 // General Purpose IO A P.. #define MCP23S08_OLAT_A 0x0A // NOT USED output latch P.. // low level read / write masks #define MCP23S08_WRITE_REG 0x40 #define MCP23S08_READ_REG 0x41 /* MCP23S08::MCP23S08() { } */ MCP23S08::MCP23S08(uint8_t select, uint8_t dataIn, uint8_t dataOut, uint8_t clock, uint8_t address) { _address = address; _select = select; _dataIn = dataIn; _dataOut = dataOut; _clock = clock; _error = MCP23S08_OK; _hwSPI = false; } MCP23S08::MCP23S08(uint8_t select, uint8_t address) { _address = address; _select = select; _error = MCP23S08_OK; _hwSPI = true; } bool MCP23S08::begin() { ::pinMode(_select, OUTPUT); ::digitalWrite(_select, HIGH); _spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0);// 8 MHz - datasheet page 8 if (_hwSPI) { // TODO - ESP32 specific support - see MCP_ADC. mySPI = &SPI; mySPI->end(); mySPI->begin(); } else { ::pinMode(_dataIn, INPUT); ::pinMode(_dataOut, OUTPUT); ::pinMode(_clock, OUTPUT); ::digitalWrite(_dataOut, LOW); ::digitalWrite(_clock, LOW); } // check connected if (! isConnected()) return false; // disable address increment (datasheet) if (! writeReg(MCP23S08_IOCR, 0b00100000)) return false; // TODO MAGIC NR // Force INPUT_PULLUP if (! writeReg(MCP23S08_PUR_A, 0xFF)) return false; return true; } bool MCP23S08::isConnected() { _error = MCP23S08_OK; return true; } // single pin interface // pin = 0..7 // mode = INPUT, OUTPUT, INPUT_PULLUP (= same as INPUT) bool MCP23S08::pinMode(uint8_t pin, uint8_t mode) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return false; } if ((mode != INPUT) && (mode != INPUT_PULLUP) && (mode != OUTPUT)) { _error = MCP23S08_VALUE_ERROR; return false; } uint8_t dataDirectionRegister = MCP23S08_DDR_A; uint8_t val = readReg(dataDirectionRegister); if (_error != MCP23S08_OK) { return false; } uint8_t mask = 1 << pin; // only work with valid if ((mode == INPUT) || (mode == INPUT_PULLUP)) { val |= mask; } else if (mode == OUTPUT) { val &= ~mask; } // other values won't change val .... writeReg(dataDirectionRegister, val); if (_error != MCP23S08_OK) { return false; } return true; } // pin = 0..7 // value = LOW, HIGH bool MCP23S08::digitalWrite(uint8_t pin, uint8_t value) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return false; } uint8_t IOR = MCP23S08_GPIO_A; uint8_t val = readReg(IOR); if (_error != MCP23S08_OK) { return false; } uint8_t mask = 1 << pin; if (value) { val |= mask; } else { val &= ~mask; } writeReg(IOR, val); if (_error != MCP23S08_OK) { return false; } return true; } uint8_t MCP23S08::digitalRead(uint8_t pin) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return MCP23S08_INVALID_READ; } uint8_t IOR = MCP23S08_GPIO_A; uint8_t val = readReg(IOR); if (_error != MCP23S08_OK) { return MCP23S08_INVALID_READ; } uint8_t mask = 1 << pin; if (val & mask) return HIGH; return LOW; } // pin = 0..7 // reversed = true or false bool MCP23S08::setPolarity(uint8_t pin, bool reversed) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return false; } uint8_t inputPolarityRegister = MCP23S08_POL_A; uint8_t val = readReg(inputPolarityRegister); if (_error != MCP23S08_OK) { return false; } uint8_t mask = 1 << pin; if (reversed) { val |= mask; } else { val &= ~mask; } writeReg(inputPolarityRegister, val); if (_error != MCP23S08_OK) { return false; } return true; } bool MCP23S08::getPolarity(uint8_t pin, bool &reversed) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return false; } uint8_t inputPolarityRegister = MCP23S08_POL_A; uint8_t val = readReg(inputPolarityRegister); if (_error != MCP23S08_OK) { return false; } uint8_t mask = 1 << pin; reversed = (val & mask) > 0; return true; } // pin = 0..7 // pullup = true or false bool MCP23S08::setPullup(uint8_t pin, bool pullup) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return false; } uint8_t inputPullupRegister = MCP23S08_PUR_A; uint8_t val = readReg(inputPullupRegister); if (_error != MCP23S08_OK) { return false; } uint8_t mask = 1 << pin; if (pullup) { val |= mask; } else { val &= ~mask; } writeReg(inputPullupRegister, val); if (_error != MCP23S08_OK) { return false; } return true; } bool MCP23S08::getPullup(uint8_t pin, bool &pullup) { if (pin > 7) { _error = MCP23S08_PIN_ERROR; return false; } uint8_t inputPullupRegister = MCP23S08_PUR_A; uint8_t val = readReg(inputPullupRegister); if (_error != MCP23S08_OK) { return false; } uint8_t mask = 1 << pin; pullup = (val & mask) > 0; return true; } void MCP23S08::setSPIspeed(uint32_t speed) { _SPIspeed = speed; _spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE0); }; /////////////////////////////////////////////////////////////////////// // 8 pins interface // whole register at once // value = 0..0xFF bit pattern bool MCP23S08::pinMode8(uint8_t value) { writeReg(MCP23S08_DDR_A, value); _error = MCP23S08_OK; return true; } bool MCP23S08::write8(uint8_t value) { writeReg(MCP23S08_GPIO_A, value); _error = MCP23S08_OK; return true; } int MCP23S08::read8() { _error = MCP23S08_OK; return readReg(MCP23S08_GPIO_A); } // mask = 0..0xFF bit pattern bool MCP23S08::setPolarity8(uint8_t mask) { writeReg(MCP23S08_POL_A, mask); if (_error != MCP23S08_OK) { return false; } return true; } bool MCP23S08::getPolarity8(uint8_t &mask) { mask = readReg(MCP23S08_POL_A); if (_error != MCP23S08_OK) { return false; } return true; } // mask = 0..0xFF bit pattern bool MCP23S08::setPullup8(uint8_t mask) { writeReg(MCP23S08_PUR_A, mask); if (_error != MCP23S08_OK) { return false; } return true; } bool MCP23S08::getPullup8(uint8_t &mask) { mask = readReg(MCP23S08_PUR_A); if (_error != MCP23S08_OK) { return false; } return true; } int MCP23S08::lastError() { int e = _error; _error = MCP23S08_OK; // reset error after read. return e; } //////////////////////////////////////////////////// // // PRIVATE // bool MCP23S08::writeReg(uint8_t reg, uint8_t value) { _error = MCP23S08_OK; if (reg > MCP23S08_OLAT_A) { _error = 0xFF; // TODO MAGIC NR return false; } ::digitalWrite(_select, LOW); if (_hwSPI) { mySPI->beginTransaction(_spi_settings); mySPI->transfer(MCP23S08_WRITE_REG | (_address << 1) ); mySPI->transfer(reg); mySPI->transfer(value); mySPI->endTransaction(); } else { swSPI_transfer(MCP23S08_WRITE_REG | (_address << 1) ); swSPI_transfer(reg); swSPI_transfer(value); } ::digitalWrite(_select, HIGH); return true; } uint8_t MCP23S08::readReg(uint8_t reg) { uint8_t rv = 0; _error = MCP23S08_OK; if (reg > MCP23S08_OLAT_A) { _error = 0xFF; // TODO MAGIC NR return false; } ::digitalWrite(_select, LOW); if (_hwSPI) { mySPI->beginTransaction(_spi_settings); mySPI->transfer(MCP23S08_READ_REG | (_address << 1) ); // TODO OPTIMIZE n times mySPI->transfer(reg); rv = mySPI->transfer(0xFF); mySPI->endTransaction(); } else { swSPI_transfer(MCP23S08_READ_REG | (_address << 1) ); swSPI_transfer(reg); rv = swSPI_transfer(0xFF); } ::digitalWrite(_select, HIGH); return rv; } uint8_t MCP23S08::swSPI_transfer(uint8_t val) { uint8_t clk = _clock; uint8_t dao = _dataOut; uint8_t dai = _dataIn; uint8_t rv = 0; for (uint8_t mask = 0x80; mask > 0; mask >>= 1) { ::digitalWrite(dao, (val & mask)); ::digitalWrite(clk, HIGH); if (::digitalRead(dai) == HIGH) rv |= mask; ::digitalWrite(clk, LOW); } return rv; } // -- END OF FILE --